The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl...The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.展开更多
A fluid inclusion fluorescence and microthermometric study was performed on sandstones from the deep Es4 reservoir rocks of the Minfeng (民丰) sag, north of Dongying (东营) depression. Two types of oil inclusions ...A fluid inclusion fluorescence and microthermometric study was performed on sandstones from the deep Es4 reservoir rocks of the Minfeng (民丰) sag, north of Dongying (东营) depression. Two types of oil inclusions (yellow and blue white fluorescence), one type of gas inclusions (blue white fluorescence), and bitumen inclusions (no fluorescence) were detected within quartz and feldspar minerals. The evolution of hydrocarbon fluid inclusions in the lower Es4 sequence indicates that present oil accumulation was predominantly thermal stress controlled. Homogenization temperatures of aqueous fluid inclusions coexisting with gas-bearing and bitumen-bearing fluid inclusions indicate that oil cracking occurred at temperatures up to 160 ℃, primary condensate or wet gas genera- tion occurred during 170-195℃. Oil has cracked into condensate or wet gas in the depth of 4 300- 4 410 m and dry gas and abundant pyrobitumen in the depth of more than 4 410 m in the geological history based on the fluid inclusion extrapolation. Secondary oil cracking is undergoing in present day when the depth of reservoir is more than 4 150 m whose temperature is the threshold temperature of oil cracking (160 ℃). However, because of the consumption of oil in the first oil cracking process, it may have few chances to find liquid petroleum, and only natural gas can be found when the depth of reservoir is more than 4 410 m, where oil cracks into condensate gas or wet gas according to present-day formation temperature. This study is preliminary but foreshadows a new insight into oilcracking using natural fluid inclusions to trace hydrocarbon evolution in sedimentary basins.展开更多
This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields ...This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields and selectivities of ethylene and propylene in cocracking. The difference in coking tendencies betWeen the cocracking and the separate cracking is compared as well.展开更多
Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their var...Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their variations with operating conditions. Rapid pyrolysis of oil shale in fluidized bed(FB) obtained shale oil yield higher than the Fischer Assay oil yield at temperatures of 500-600 ℃. The highest yield was 12.7 wt% at 500 ℃ and was about1.3 times of the Fischer Assay oil yield. The heavy fraction(boiling point > 350 ℃) in shale oil at all temperatures from rapid pyrolysis was above 50%. Adding an upper FB of secondary cracking over oil shale char caused the loss of shale oil but improved its quality. Heavy fraction yield decreased significantly and almost disappeared at temperatures above 550 ℃, while the corresponding light fraction(boiling point < 350 ℃) yield dramatically increased. In terms of achieving high light fraction yield, the optimal pyrolysis and also secondary cracking temperatures in TSFB were 600 ℃, at which the shale oil yield decreased by 17.74% but its light fraction yield of 7.07 wt% increased by 86.11% in comparison with FB pyrolysis. The light fraction yield was higher than that of Fischer Assay at all cases in TSFB. Thus, a rapid pyrolysis of oil shale combined with volatile upgrading was important for producing high-quality shale oil with high yield as well.展开更多
To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, Chin...To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, China, the main strike-slip faults in and around well FD1 in the basin were analyzed in terms of sedimentary facies, sequence stratigraphy, intraplatform shoal reservoir property, and oil and gas origins, based on drilling data. The Yingshan Formation intraplatform shoal between the main strike-slip faults is superimposed with low-order faults to form a new type of hydrocarbon play. Firstly, hydrocarbons generated from the Lower Cambrian Yuertusi Formation source rocks vertically migrated into the second member of Yingshan Formation through the main strike-slip faults, and then migrated laterally until they were accumulated. A small amount of oil from Well FD1 came from the Yuertusi Formation source rocks in the mature stage, and a large amount of gas originated from oil cracking in the ultra-deep reservoirs. Therefore, the secondary gas condensate reservoir in Well FD1 is characterized by high gas to oil ratio, dry gas (dryness coefficient being 0.970) and hybrid origin. This new type of hydrocarbon play characterized by intraplatform shoal and low-order fault suggests a prospect of continuous hydrocarbon-bearing area in Fuman Oilfield, which will expand the ultrap-deep oil and gas exploration in the oilfield.展开更多
Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the proces...Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.展开更多
This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas genera...This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example.展开更多
Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas ge...Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas generation and derive geo- chemical indicators of gas genesis under approximate pressure and temperature. The results indicate that gas generation productivity of different marine material decreased in the ganic matter (solid bitumen and heavy oil), and kerogen. order of crude oil (light oil and condensate), dispersed soluble or- Under identical temperature-pressure regimes, pyrolysates derived from kerogen and dispersed soluble organic matter display drastically different geochemical characteristics. For example, the δ13Cc02-δ13C1 values of gaseous products from dispersed soluble organic matter are greater than 20%o, whereas those from kerogen are less than 20%~. The 813C1 values of pyrolysates from different marine hydrocarbon sources generally increase with pyrolysis temperature, but are always lower than those of the source precursors. The δ13C values of ethane and propane in the pyrolysates also increase with increasing pyrolysis temperature, eventually approaching that of their sources, at peak hydro- carbon generation. At high-over mature stages, the δ13C values of ethane and propane are often greater than those of their sources but close to those of coal gases, and thus become ineffective as gas genetic indicators. Ln(CffC3) can clearly distin- guish kerogen degradation gas from oil cracking gas and Ln(CJC2)-(δ13C1-δ13C2) can be an effective indicator for distinguishing oil cracking gas from dispersed soluble organic matter cracking gas.展开更多
The Sinian-Cambrian formations of the Sichuan Basin have favorable hydrocarbon accumulation conditions,but the exploration for large-scale gas fields is quite challenging due to old strata and multiple tectonic moveme...The Sinian-Cambrian formations of the Sichuan Basin have favorable hydrocarbon accumulation conditions,but the exploration for large-scale gas fields is quite challenging due to old strata and multiple tectonic movements.Since the Weiyuan Sinian large gas field was found in 1964,the largest monoblock gas field(Anyue Gasfield)was discovered in the Cambrian Longwangmiao Formation of the Moxi region in 2013 with proven gas reserves of 440.1×109 m3.Total proven,probable and possible reserves exceed one trillion cubic meters in the Sinian Dengying Formation and the Cambrian Longwangmiao Formation of the Gaoshiti-Moxi region.The natural gas components,light hydrocarbons,reservoir bitumen abundance and other evidences prove that the dry natural gas was mainly derived from oil-cracking,with methane(a content of 82.65%-97.35%),ethane(a content of 0.01%-0.29%),nitrogen(a content of 0.44%-6.13%),helium(a content of 0.01%-0.06%),and hydrogen sulphide(0.62-61.11 g/m^(3)).Gas reservoir pressure increases gradually from the Sinian normal pressure(a pressure coefficient of 1.07-1.13)to high pressure(a pressure coefficient of 1.53-1.70)in the Cambrian Longwangmiao Formation.The temperature of the gas reservoir is 137.5-163 ℃.Gas reservoir traps are divided into three categories:tectonic type,tectonic-formation type and tectonic-lithologic type.The large-scale enrichment of the Sinian-Cambrian natural gas results from effective configuration of the large stable inherited palaeo-uplift during the Tongwan tectonic movement,wide distribution of ancient source rocks,high-quality reservoirs with vast pore-cavity,crude oil cracking of large palaeo-reservoirs and favorable preservation conditions.According to the palaeo-structure pattern prior to crude oil cracking of the palaeo-reservoirs,and bitumen abundance as well as the distribution characteristics of current gas reservoirs,the accumulation patterns of the cracking gas reservoir can be classified into three types:accumulation type,semi-accumulation and semi-dispersion type,and dispersion type.This understanding will play an important role in guiding the exploration of the Sinian-Cambrian natural gas exploration in the Sichuan Basin.展开更多
基金This study is supported by the National Natural Science Foundation of China(Grants 41730424,41961144023 and 42002162)。
文摘The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.
基金supported by the National Natural Science Foundation of China (No. 40372068)
文摘A fluid inclusion fluorescence and microthermometric study was performed on sandstones from the deep Es4 reservoir rocks of the Minfeng (民丰) sag, north of Dongying (东营) depression. Two types of oil inclusions (yellow and blue white fluorescence), one type of gas inclusions (blue white fluorescence), and bitumen inclusions (no fluorescence) were detected within quartz and feldspar minerals. The evolution of hydrocarbon fluid inclusions in the lower Es4 sequence indicates that present oil accumulation was predominantly thermal stress controlled. Homogenization temperatures of aqueous fluid inclusions coexisting with gas-bearing and bitumen-bearing fluid inclusions indicate that oil cracking occurred at temperatures up to 160 ℃, primary condensate or wet gas genera- tion occurred during 170-195℃. Oil has cracked into condensate or wet gas in the depth of 4 300- 4 410 m and dry gas and abundant pyrobitumen in the depth of more than 4 410 m in the geological history based on the fluid inclusion extrapolation. Secondary oil cracking is undergoing in present day when the depth of reservoir is more than 4 150 m whose temperature is the threshold temperature of oil cracking (160 ℃). However, because of the consumption of oil in the first oil cracking process, it may have few chances to find liquid petroleum, and only natural gas can be found when the depth of reservoir is more than 4 410 m, where oil cracks into condensate gas or wet gas according to present-day formation temperature. This study is preliminary but foreshadows a new insight into oilcracking using natural fluid inclusions to trace hydrocarbon evolution in sedimentary basins.
文摘This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields and selectivities of ethylene and propylene in cocracking. The difference in coking tendencies betWeen the cocracking and the separate cracking is compared as well.
基金Supported by the National Basic Research Program of China(2014CB744303)
文摘Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their variations with operating conditions. Rapid pyrolysis of oil shale in fluidized bed(FB) obtained shale oil yield higher than the Fischer Assay oil yield at temperatures of 500-600 ℃. The highest yield was 12.7 wt% at 500 ℃ and was about1.3 times of the Fischer Assay oil yield. The heavy fraction(boiling point > 350 ℃) in shale oil at all temperatures from rapid pyrolysis was above 50%. Adding an upper FB of secondary cracking over oil shale char caused the loss of shale oil but improved its quality. Heavy fraction yield decreased significantly and almost disappeared at temperatures above 550 ℃, while the corresponding light fraction(boiling point < 350 ℃) yield dramatically increased. In terms of achieving high light fraction yield, the optimal pyrolysis and also secondary cracking temperatures in TSFB were 600 ℃, at which the shale oil yield decreased by 17.74% but its light fraction yield of 7.07 wt% increased by 86.11% in comparison with FB pyrolysis. The light fraction yield was higher than that of Fischer Assay at all cases in TSFB. Thus, a rapid pyrolysis of oil shale combined with volatile upgrading was important for producing high-quality shale oil with high yield as well.
基金Supported by the National Natural Science Foundation of China(42230816)PetroChina Science and Technology Project(2021DJ1501)Tarim Oilfield Technology Project(T202112).
文摘To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, China, the main strike-slip faults in and around well FD1 in the basin were analyzed in terms of sedimentary facies, sequence stratigraphy, intraplatform shoal reservoir property, and oil and gas origins, based on drilling data. The Yingshan Formation intraplatform shoal between the main strike-slip faults is superimposed with low-order faults to form a new type of hydrocarbon play. Firstly, hydrocarbons generated from the Lower Cambrian Yuertusi Formation source rocks vertically migrated into the second member of Yingshan Formation through the main strike-slip faults, and then migrated laterally until they were accumulated. A small amount of oil from Well FD1 came from the Yuertusi Formation source rocks in the mature stage, and a large amount of gas originated from oil cracking in the ultra-deep reservoirs. Therefore, the secondary gas condensate reservoir in Well FD1 is characterized by high gas to oil ratio, dry gas (dryness coefficient being 0.970) and hybrid origin. This new type of hydrocarbon play characterized by intraplatform shoal and low-order fault suggests a prospect of continuous hydrocarbon-bearing area in Fuman Oilfield, which will expand the ultrap-deep oil and gas exploration in the oilfield.
基金supported by the National Natural Science Foundation of China(Grant Nos.40802026&41272140)Shandong Province Natural Science Foundation(Grant No.ZR2011DM004)
文摘Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.
文摘This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example.
基金supported by Petroleum & Chemical United Fund Project(Grant No. 40739902)
文摘Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas generation and derive geo- chemical indicators of gas genesis under approximate pressure and temperature. The results indicate that gas generation productivity of different marine material decreased in the ganic matter (solid bitumen and heavy oil), and kerogen. order of crude oil (light oil and condensate), dispersed soluble or- Under identical temperature-pressure regimes, pyrolysates derived from kerogen and dispersed soluble organic matter display drastically different geochemical characteristics. For example, the δ13Cc02-δ13C1 values of gaseous products from dispersed soluble organic matter are greater than 20%o, whereas those from kerogen are less than 20%~. The 813C1 values of pyrolysates from different marine hydrocarbon sources generally increase with pyrolysis temperature, but are always lower than those of the source precursors. The δ13C values of ethane and propane in the pyrolysates also increase with increasing pyrolysis temperature, eventually approaching that of their sources, at peak hydro- carbon generation. At high-over mature stages, the δ13C values of ethane and propane are often greater than those of their sources but close to those of coal gases, and thus become ineffective as gas genetic indicators. Ln(CffC3) can clearly distin- guish kerogen degradation gas from oil cracking gas and Ln(CJC2)-(δ13C1-δ13C2) can be an effective indicator for distinguishing oil cracking gas from dispersed soluble organic matter cracking gas.
基金This work was funded by National Science and Technology Major Project of China(Grant No.2011ZX05007)PetroChina Exploration and Production Special Project“Evaluation and associated exploration technology research of Sinian hydrocarbon-bearing reservoir in Leshan-Longnvsi Paleo-uplift of the Sichuan Basin”.
文摘The Sinian-Cambrian formations of the Sichuan Basin have favorable hydrocarbon accumulation conditions,but the exploration for large-scale gas fields is quite challenging due to old strata and multiple tectonic movements.Since the Weiyuan Sinian large gas field was found in 1964,the largest monoblock gas field(Anyue Gasfield)was discovered in the Cambrian Longwangmiao Formation of the Moxi region in 2013 with proven gas reserves of 440.1×109 m3.Total proven,probable and possible reserves exceed one trillion cubic meters in the Sinian Dengying Formation and the Cambrian Longwangmiao Formation of the Gaoshiti-Moxi region.The natural gas components,light hydrocarbons,reservoir bitumen abundance and other evidences prove that the dry natural gas was mainly derived from oil-cracking,with methane(a content of 82.65%-97.35%),ethane(a content of 0.01%-0.29%),nitrogen(a content of 0.44%-6.13%),helium(a content of 0.01%-0.06%),and hydrogen sulphide(0.62-61.11 g/m^(3)).Gas reservoir pressure increases gradually from the Sinian normal pressure(a pressure coefficient of 1.07-1.13)to high pressure(a pressure coefficient of 1.53-1.70)in the Cambrian Longwangmiao Formation.The temperature of the gas reservoir is 137.5-163 ℃.Gas reservoir traps are divided into three categories:tectonic type,tectonic-formation type and tectonic-lithologic type.The large-scale enrichment of the Sinian-Cambrian natural gas results from effective configuration of the large stable inherited palaeo-uplift during the Tongwan tectonic movement,wide distribution of ancient source rocks,high-quality reservoirs with vast pore-cavity,crude oil cracking of large palaeo-reservoirs and favorable preservation conditions.According to the palaeo-structure pattern prior to crude oil cracking of the palaeo-reservoirs,and bitumen abundance as well as the distribution characteristics of current gas reservoirs,the accumulation patterns of the cracking gas reservoir can be classified into three types:accumulation type,semi-accumulation and semi-dispersion type,and dispersion type.This understanding will play an important role in guiding the exploration of the Sinian-Cambrian natural gas exploration in the Sichuan Basin.