We analyzed two types of crude oil samples: Middle Eastern crude oil and Texas crude oil by using a residual gas analyzer (RGA) based on the linear quadrupole principle. This portable mass analyzer is capable of measu...We analyzed two types of crude oil samples: Middle Eastern crude oil and Texas crude oil by using a residual gas analyzer (RGA) based on the linear quadrupole principle. This portable mass analyzer is capable of measuring hydrocarbons with masses of up to 300 atomic mass units (amu) as well as low mass targets, such as methane and carbon dioxide at ppm level concentrations. The generated mass spectra revealed differences in the composition and signal intensity of hydrocarbons of Middle Eastern and Texas crude oil samples. Even if RGA 300 is manufactured to be served as a detailed gas analysis of vacuum systems, we have shown that it is sensitively capable of detection of hydrocarbons and it enables one to qualitative and quantitative analysis of the composition of the crude oils.展开更多
In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,whi...In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.展开更多
文摘We analyzed two types of crude oil samples: Middle Eastern crude oil and Texas crude oil by using a residual gas analyzer (RGA) based on the linear quadrupole principle. This portable mass analyzer is capable of measuring hydrocarbons with masses of up to 300 atomic mass units (amu) as well as low mass targets, such as methane and carbon dioxide at ppm level concentrations. The generated mass spectra revealed differences in the composition and signal intensity of hydrocarbons of Middle Eastern and Texas crude oil samples. Even if RGA 300 is manufactured to be served as a detailed gas analysis of vacuum systems, we have shown that it is sensitively capable of detection of hydrocarbons and it enables one to qualitative and quantitative analysis of the composition of the crude oils.
基金Supported by the National Natural Science Foundation of China(U1862103).
文摘In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.