This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region d...This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region due to intended/unin- tended damages and suggests a possible method of control. It is believed that the best option to avoid pollution due to pipeline failure is to ensure that hydrocarbon does not exit from the pipeline. With the different methods considered in this review, acoustic monitoring of change in the operational sound generated from a given pipeline section is suggested to be practicable to identifying sound abnormalities of third party encroachments. One established challenge of the acoustic system for buried pipelines protection is attenuation of acoustic transmission. An attempt to check the performance of an acoustic transmission on steel pipelines submerged in water points to a similar research on plastic water pipelines that attenuation is small compared with pipe buried in soil. Fortunately, Niger Delta of Nigeria is made of wetland, swamps and shallow water and could therefore offer an opportunity to deploy acoustic system for the safety of pipelines against third party attacks in this region. However, the numerous configuration and quantity of oil installation in this region imply that cost of application will be enormous. It is therefore suggested that a combination of impressed alternating cycle current (IACC) which traces encroachment on the pipeline coating and an acoustic system be used to manage intended and unintended pipeline potential damages. The IACC should be used for flow lines and other short distance delivery lines within the oilfield, while the relatively large diameter and long length delivery, trunk and transmission lines should be considered for acoustic protection. It is, however, noted that further efforts are required to reduce cost and improve effectiveness of these systems.展开更多
A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of...Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of consequences.Therefore,the oil and gas pipeline leakage detection is paid more and more attention.In this paper,ultra-low power methane gas sensor is selected to collect methane gas concentration in the air,and wireless network technology is used to build a wireless network sensor system with 4G function.Through the sensor distribution along the pipeline,it can intuitively and accurately judge whether there is a micro-leakage in the pipeline,and understand the diffusion situation after the leakage.The sensor system has high reliability and stability,and has high value of popularization and application.展开更多
文摘This paper examines the advances in pipeline third party encroachment alert systems and leak control methods in the oil/gas industry. It also highlights the extent of spill/pollution issues in the Niger Delta region due to intended/unin- tended damages and suggests a possible method of control. It is believed that the best option to avoid pollution due to pipeline failure is to ensure that hydrocarbon does not exit from the pipeline. With the different methods considered in this review, acoustic monitoring of change in the operational sound generated from a given pipeline section is suggested to be practicable to identifying sound abnormalities of third party encroachments. One established challenge of the acoustic system for buried pipelines protection is attenuation of acoustic transmission. An attempt to check the performance of an acoustic transmission on steel pipelines submerged in water points to a similar research on plastic water pipelines that attenuation is small compared with pipe buried in soil. Fortunately, Niger Delta of Nigeria is made of wetland, swamps and shallow water and could therefore offer an opportunity to deploy acoustic system for the safety of pipelines against third party attacks in this region. However, the numerous configuration and quantity of oil installation in this region imply that cost of application will be enormous. It is therefore suggested that a combination of impressed alternating cycle current (IACC) which traces encroachment on the pipeline coating and an acoustic system be used to manage intended and unintended pipeline potential damages. The IACC should be used for flow lines and other short distance delivery lines within the oilfield, while the relatively large diameter and long length delivery, trunk and transmission lines should be considered for acoustic protection. It is, however, noted that further efforts are required to reduce cost and improve effectiveness of these systems.
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.
基金The 2019 Ministry of Education industry-university cooperation collaborative education project“Research on the Construction of Economics and Management Professional Data Analysis Laboratory”(Project number:201902077020)。
文摘Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of consequences.Therefore,the oil and gas pipeline leakage detection is paid more and more attention.In this paper,ultra-low power methane gas sensor is selected to collect methane gas concentration in the air,and wireless network technology is used to build a wireless network sensor system with 4G function.Through the sensor distribution along the pipeline,it can intuitively and accurately judge whether there is a micro-leakage in the pipeline,and understand the diffusion situation after the leakage.The sensor system has high reliability and stability,and has high value of popularization and application.