It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investm...It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.展开更多
We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging o...We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.展开更多
Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations....Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.展开更多
In this paper,the transportation economy of two heated crude oil pipelines laid in one ditch is analyzed by taking into account the influence of operating temperature,interval between two pipelines,and distance betwee...In this paper,the transportation economy of two heated crude oil pipelines laid in one ditch is analyzed by taking into account the influence of operating temperature,interval between two pipelines,and distance between two heating stations on the heating energy consumption.To analyze the transportation economy,the two heated crude oil pipelines laid in one ditch are simulated under four operating conditions based on an unstructured finite volume method.Compared with laying two crude oil pipelines separately in two ditches,the results attest notably higher soil temperature,meaning reduced heat dissipation of each pipeline by laying two pipelines in one ditch.It is inferred that for the same desired oil temperature at the inlet of the next heating station,laying two pipelines in one ditch requires lower oil temperature at the outlet of heating station,indicating decreased energy cost at the heating station and improved transportation economy.Then economy analysis of four configurations of laying two pipelines in one ditch is performed.By comparing the results of four conditions,the interval between two pipelines of 1.2 m is found to save the energy most efficiently,which is as large as 26.6%compared with that of laying two pipelines in two separate ditches.In addition,narrowing the pipeline interval and extending the distance between heating stations is beneficial to save heating energy.This study is expected to provide valuable guidance for operation optimization of heated crude oil pipelines.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
In the oil pipeline world,wireless automation plays an important role through integrated electronic technology in antenna design for robust performance.The technology gets evaluated by its power consumption and compac...In the oil pipeline world,wireless automation plays an important role through integrated electronic technology in antenna design for robust performance.The technology gets evaluated by its power consumption and compactness to afford a better solution to real-world problems with better sophistication to adopt a modernized wireless world.Among that,the IoT(Internet of Things)technology plays a predominant role by combining with Artificial Intelligence to optimize and revolute the characterization of data communication.When the data communication is initiated,the main contributor to the transmission is the miniaturized antenna holding different types in its structure and processing.It acquires the required radio spectrum channel with the advanced multi coding modulating technique by utilizing token ring mesh topology for the data transfer with acquired data channels.This chapter describes the design and fabrication of a miniaturized antenna using MEMS technology(Micro-Electro-Mechanical System)and its different types using INTELLISUITE software to get suited for better communication in oil pipelines.Based on the application,it also enumerates the choices of micro or nanoantennas with its specification upholding data adopting techniques with modulation schemes to support IoT applications.展开更多
Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determ...Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determine the optimal flow conditions.The GFs were prepared from graphite foam,derived from the dehydration of sugar with a particle size of 500-600μm,which was dispersed in ethanol and exfoliated in a ball mill under a shear force.After 15 h of exfoliation,sonication,and subsequent high-speed centrifugation at 3000 rpm,irregular-shaped GFs of 50-140 nm were produced and characterized using scanning electron microscopy,X-ray diffractometry,atomic force microscopy,and Raman spectroscopy.The prepared graphene sheets have been found to display excellent morphology and good graphitic structure.Experiments on flow improvement were conducted using the central composite rotatable design method for three parameters:stimulation time(15,30,45,and 60 s),applied voltage(150,170,200,and 220 V),and concentration of the GFs(0,100,200,and 400 mg/L).The optimal conditions for improved crude oil flow were then determined using the STATISTICA and WinQSB software packages.The results have confirmed the effectiveness of the use of the prepared GFs as a flow improver for crude oil,where the flow improvement is essentially a result of a reduction in viscosity and suppression of friction in the crude oil system.展开更多
A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is establis...A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main...According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.展开更多
The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoele...The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.展开更多
A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear ...A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.展开更多
The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and ...The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.展开更多
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafros...On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.展开更多
Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature ...Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature monitoring in an area with sporadic permafrost at two adjacent sites along China-Russia Crude Oil Pipeline(CRCOP),NorthEast China.Site T1 is located in disturbed ground on the right-of-way(on-ROW)2 m away from the center of the oil pipeline.T2 is located in a natural and undisturbed site,around 16.6 m off-ROW.Our objective was to study seasonal variability of the active layer depth and thermal regime from October 2017 to September 2018.The monitoring sites consist of soil temperature probes arranged in a vertical array at different depths at both sites.The following parameters were computed:number of isothermal days(ID),freezing days(FD),thawing days(TD),freezing degree days(FDD),thawing degree days(TDD),number of freeze-thaw days(FTD).The mean air temperature in the monitoring period reached-3.2℃.The temperature profile indicates that the maximum active layer thickness observed during the study period was 10 m at T1 and 2 m at T2.The majority of the soil temperatures were above or close to 0℃,resulting in great values of TDD,especially in the first 4 m depth.TDD for T1 were predominant and ranged between 600-1160℃·days(0-4 m depth)reflecting the influence of oil temperature from the pipeline.In T2 borehole FDD were predominant for all the soil layer depths resulting in less permafrost degradation.This comparison emphasizes the significant influence of vegetation removal and the dispersed heat from the pipeline on the active layer thickness.展开更多
This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principl...This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.展开更多
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can...The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.展开更多
基金funded by the National Natural Science Foundation of China(NO.51704236)the Graduate Innovation and Practice Ability Development Program of Xi’an Shiyou University(NO.YCS19113037).
文摘It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.
基金supported by National Natural Science Foundation of China(51904327,51774311)Natural Science Foundation of Shandong Province of China(ZR2017MEE022)+1 种基金China Postdoctoral Science Foundation(2019TQ0354,2019M662468)Qingdao postdoctoral researchers applied research project.
文摘We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.
基金Financially supported by Sinopec Corp (2001101).
文摘Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition. In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition. These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.
文摘In this paper,the transportation economy of two heated crude oil pipelines laid in one ditch is analyzed by taking into account the influence of operating temperature,interval between two pipelines,and distance between two heating stations on the heating energy consumption.To analyze the transportation economy,the two heated crude oil pipelines laid in one ditch are simulated under four operating conditions based on an unstructured finite volume method.Compared with laying two crude oil pipelines separately in two ditches,the results attest notably higher soil temperature,meaning reduced heat dissipation of each pipeline by laying two pipelines in one ditch.It is inferred that for the same desired oil temperature at the inlet of the next heating station,laying two pipelines in one ditch requires lower oil temperature at the outlet of heating station,indicating decreased energy cost at the heating station and improved transportation economy.Then economy analysis of four configurations of laying two pipelines in one ditch is performed.By comparing the results of four conditions,the interval between two pipelines of 1.2 m is found to save the energy most efficiently,which is as large as 26.6%compared with that of laying two pipelines in two separate ditches.In addition,narrowing the pipeline interval and extending the distance between heating stations is beneficial to save heating energy.This study is expected to provide valuable guidance for operation optimization of heated crude oil pipelines.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金the CSIR-HRDG EMR section for partially supporting the research work by Senior research fellowship with grant no.08/678(0001)2k18 EMR.
文摘In the oil pipeline world,wireless automation plays an important role through integrated electronic technology in antenna design for robust performance.The technology gets evaluated by its power consumption and compactness to afford a better solution to real-world problems with better sophistication to adopt a modernized wireless world.Among that,the IoT(Internet of Things)technology plays a predominant role by combining with Artificial Intelligence to optimize and revolute the characterization of data communication.When the data communication is initiated,the main contributor to the transmission is the miniaturized antenna holding different types in its structure and processing.It acquires the required radio spectrum channel with the advanced multi coding modulating technique by utilizing token ring mesh topology for the data transfer with acquired data channels.This chapter describes the design and fabrication of a miniaturized antenna using MEMS technology(Micro-Electro-Mechanical System)and its different types using INTELLISUITE software to get suited for better communication in oil pipelines.Based on the application,it also enumerates the choices of micro or nanoantennas with its specification upholding data adopting techniques with modulation schemes to support IoT applications.
文摘Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determine the optimal flow conditions.The GFs were prepared from graphite foam,derived from the dehydration of sugar with a particle size of 500-600μm,which was dispersed in ethanol and exfoliated in a ball mill under a shear force.After 15 h of exfoliation,sonication,and subsequent high-speed centrifugation at 3000 rpm,irregular-shaped GFs of 50-140 nm were produced and characterized using scanning electron microscopy,X-ray diffractometry,atomic force microscopy,and Raman spectroscopy.The prepared graphene sheets have been found to display excellent morphology and good graphitic structure.Experiments on flow improvement were conducted using the central composite rotatable design method for three parameters:stimulation time(15,30,45,and 60 s),applied voltage(150,170,200,and 220 V),and concentration of the GFs(0,100,200,and 400 mg/L).The optimal conditions for improved crude oil flow were then determined using the STATISTICA and WinQSB software packages.The results have confirmed the effectiveness of the use of the prepared GFs as a flow improver for crude oil,where the flow improvement is essentially a result of a reduction in viscosity and suppression of friction in the crude oil system.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0805804,2017YFC0805801)
文摘A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
文摘According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.
基金financially supported by the National High-Tech Research and Development Program of China (No.2012AA040105)the National Nature Science Foundation of China (Nos. 51131001 and 51741034)the Beijing Higher Education Young Elite Teacher Project
文摘The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.
文摘A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.
文摘The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
基金supported by the National Natural Science Foundation Program of China on"Formation mechanisms and mitigative measures for thaw settlement of foundation soils of the China-Russia Crude Oil Pipeline"(Grant No.41171055)the State Key Laboratory of Frozen Soils Engineering Research Projects of China on"Monitoring on thaw settlement of permafrost around the China-Russia Crude Oil Pipeline"(Grant No.SKLFSE-ZY-11)and"Research on isotope tracing and radar detection of permafrost along the China-Russia Crude Oil Pipeline route"(Grant No.SKLFSE-201302)
文摘On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.
基金supported by the National Natural Science Foundation of China(NNSFC)(No.41672310)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA2003020102)+4 种基金China’s Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0905)the NNSFC(Nos.U1703244 and 41630636)National Key Research and Development Program(2017YFC0405101)the Major Program of Bureau of International Cooperation of the Chinese Academy of Sciences(131B62KYSB20170012)Foundation of the State Key Laboratory of Frozen Soil Engineering(No.SKLFSE-ZY-20)。
文摘Active layer is a key component for permafrost environment studies as many subsurface biological,biogeochemical,ecological,and pedogenic activities prevail in this layer.This study focuses on active layer temperature monitoring in an area with sporadic permafrost at two adjacent sites along China-Russia Crude Oil Pipeline(CRCOP),NorthEast China.Site T1 is located in disturbed ground on the right-of-way(on-ROW)2 m away from the center of the oil pipeline.T2 is located in a natural and undisturbed site,around 16.6 m off-ROW.Our objective was to study seasonal variability of the active layer depth and thermal regime from October 2017 to September 2018.The monitoring sites consist of soil temperature probes arranged in a vertical array at different depths at both sites.The following parameters were computed:number of isothermal days(ID),freezing days(FD),thawing days(TD),freezing degree days(FDD),thawing degree days(TDD),number of freeze-thaw days(FTD).The mean air temperature in the monitoring period reached-3.2℃.The temperature profile indicates that the maximum active layer thickness observed during the study period was 10 m at T1 and 2 m at T2.The majority of the soil temperatures were above or close to 0℃,resulting in great values of TDD,especially in the first 4 m depth.TDD for T1 were predominant and ranged between 600-1160℃·days(0-4 m depth)reflecting the influence of oil temperature from the pipeline.In T2 borehole FDD were predominant for all the soil layer depths resulting in less permafrost degradation.This comparison emphasizes the significant influence of vegetation removal and the dispersed heat from the pipeline on the active layer thickness.
文摘This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.
基金supported by the National Scientific and Technological support project MST (2006BAC13B02-0106)spe-cial research funds from the Public Institute of China,Institute of Geophysics (IGP),China Earthquake Ad-ministration (CEA) (DQJB06A01)The contribution No. is 10FE3004,IGP,CEA
文摘The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.