Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, ...Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.展开更多
Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate roc...Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges.The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model.This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode.The overall regional process design adheres to the design concept of"environmental protection,efficiency,and innovation",strictly follows the design specifications,and combines reservoir engineering and oil production engineering programs,oil and gas physical properties and chemical composition,product programs,ground natural conditions,etc.According to the technical and economic analysis and comparison of area A,this paper has worked out a suitable surface engineering construction,pipeline network layout and oil and gas gathering and transportation plan for area A.Some auxiliary management recommendations are also proposed in this paper,like sand prevention management and HSE management for carbonate reservoirs.展开更多
The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into fo...The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into four different parts: dissolving and inflation region, low temperature oxidation region, medium temperature oxidation region and high temperature oxidation region. The reaction mechanisms of different regions were explained. Based on the oil oxidation characteristics and filed tests results, light oil reservoirs air injection development methods were divided into two types: oxygen-reducing air flooding and air flooding;heavy oil reservoirs air injection in-situ combustion development methods were divided into two types: medium temperature in-situ combustion and high temperature in-situ combustion. When the reservoir temperature is lower than 120 ℃, oxygen-reducing air flooding should be used for light oil reservoir development. When the reservoir temperature is higher than 120 ℃, air flooding method should be used for light oil reservoir development. For a normal heavy oil reservoir, when the combustion front temperature is lower than 400 ℃, the development method is medium temperature in-situ combustion. For a heavy oil reservoir with high oil resin and asphalting contents, when the combustion front temperature is higher than 450 ℃, the development method at this condition is high temperature in-situ combustion. Ten years field tests of air injection carried out by PetroChina proved that air has advantages in technical, economical and gas source aspects compared with other gas agents for oilfield gas injection development. Air injection development can be used in low/super-low permeability light oil reservoirs, medium and high permeability light oil reservoirs and heavy oil reservoirs. Air is a very promising gas flooding agent.展开更多
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor...The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.展开更多
By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formati...By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.展开更多
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were...Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.展开更多
The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil ...The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.展开更多
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials...The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.展开更多
Miyun Reservoir was designated as the water source of Beijing City in 1982. Since that time, socio economic development in Miyun Area has been slowing due to the restriction of severe environmental standards. More and...Miyun Reservoir was designated as the water source of Beijing City in 1982. Since that time, socio economic development in Miyun Area has been slowing due to the restriction of severe environmental standards. More and more attention from the public and government has been paid to the regional sustainable development. And an effective planning for the local society management system is urgently desired. In this study, a regional sustainable development system dynamics model, named MiyunSD, is developed for supporting this planning task. MiyunSD consists of dynamic simulation models that explicitly consider information feedback that governs interactions in the system. Such models are capable of simulating the system′s behavior and predicting its developing situation of the future. For the study case, interactions among a number of system components within a time frame of fifteen years are examined dynamically. Three planning alternatives are carefully considered. The base run is based on an assumption that the existing pattern of human activities will prevail in the entire planning horizon, and the other alternatives are based on previous and present planning studies. The different alternatives will get different system′s environmental and socio economic results. Through analyzing these dynamic results, local authorities may find an optimal way to realize the objectives that the regional environment will be well protected and at the same time the economy will be rapidly developed.展开更多
As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new p...As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.展开更多
Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration an...Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration and development of petroleum inside continental source kitchens of China National Petroleum Corporation exploration areas in recent two years,we have achieved the following results:(1)The geological connotations of continental hydrocarbon accumulation inside source kitchen and"sweet spot"have been proposed.The intra-source petroleum accumulation refers to the accumulation of liquid-rich hydrocarbons retained or captured in the continental organic-rich shale strata,and"sweet spot"refers to the favorable reservoir with higher oil content,better physical properties,easier to stimulate and higher in commercial development value in the overall oil-bearing continental source rock series,they can be divided into three types,interlayer,hybrid sediment and shale.(2)High-quality shale formations in both salt water and freshwater lacustrine basins can generate hydrocarbons on a large scale,shale strata have multiple types of favorable reservoirs with large-scale storage capacity,the intra-source shale strata are overall oil-bearing and large in resource scale,and there are multiple favorable shale series for development.The exploration and development practice is propelling the formation of a series of exploration and development key technologies with"sweet spot exploration"and"volume development"as the core.Some pilot tests of these technologies have provided an important scientific basis for the economic and effective development of hydrocarbon accumulation inside source kitchen,and popularization of these technologies have achieved encouraging results preliminarily.(3)Two types of continental intra-source petroleum resources in China have great potential,including medium-high maturity with liquid-rich hydrocarbons and medium-low maturity with organic-rich matter.The Ordos,Songliao,Bohai Bay and Junggar basins are the main areas of these resources.By addressing the theoretical and technical challenges in the exploration and development,the two types of resources inside continental source kitchens will become the realistic and major strategic replacement oil resources respectively in the future.展开更多
Oil formation volume factor(OFVF)is considered one of the main parameters required to characterize the crude oil.OFVF is needed in reservoir simulation and prediction of the oil reservoir performance.Existing correlat...Oil formation volume factor(OFVF)is considered one of the main parameters required to characterize the crude oil.OFVF is needed in reservoir simulation and prediction of the oil reservoir performance.Existing correlations apply for specific oils and cannot be extended to other oil types.In addition,big errors were obtained when we applied existing correlations to predict the OFVF.There is a massive need to have a global OFVF correlation that can be used for different oils with less error.The objective of this paper is to develop a new empirical correlation for oil formation volume factor(OFVF)prediction using artificial intelligent techniques(AI)such as;artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS),and support vector machine(SVM).For the first time we changed the ANN model to a white box by extracting the weights and the biases from AI models and form a new empirical equation for OFVF prediction.In this paper we present a new empirical correlation extracted from ANN based on 760 experimental data points for different oils with different compositions.The results obtained showed that the ANN model yielded the highest correlation coefficient(0.997)and lowest average absolute error(less than 1%)for OFVF prediction as a function of the specific gravity of gas,the dissolved gas to oil ratio,the oil specific gravity,and the temperature of the reservoir compared with ANFIS and SVM.The developed empirical equation from the ANN model outperformed the previous empirical correlations and AI models for OFVF prediction.It can be used to predict the OFVF with a high accuracy.展开更多
Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated thr...Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated through deduction of equilibrium equation and presentation of equilibrium curves with an“equilibrium point”.Influences of artificial controllable factors(e.g.well ratio of injection to production and total well number)on equilibrium were particularly analyzed using field data.It was found that the influences were mainly reflected as the location move of equilibrium point with factor change.Then reservoir pressure maintenance level was especially introduced to reveal the variation law of liquid rate and oil rate with the rising of water cut.It was also found that,even if reservoir pressure kept constant,oil rate still inevitably declined.However,in the field,a stabilized oil rate was always pursued for development efficiency.Therefore,the equilibrium issue of stabilized oil production was studied deeply through probing into some effective measures to realize oil rate stability after the increase of water cut for the example reservoir.Successful example application indicated that the integrated approach was very practical and feasible,and hence could be used to the other similar reservoir.展开更多
Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as produc...Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as production progresses which require varying injection and production settings for economic recovery. As water is injected into the reservoir, more oil is expected to be produced. There is also likelihood that water is produced in association with the oil. The worst case is when the injected water meanders through the reservoir, it bypasses pools of oil and gets produced, Therefore, any effort geared toward finding the optimal settings to maximize the value of this venture can never be over emphasized. Waterflooding can be formulated as an optimal control problem. However, traditional optimal control is an open-loop solution, hence cannot cope with various uncertainties inevitably existing in any practical systems. Reservoir models are highly uncertain. Its properties are known with some degrees of certainty near the well-bore region only. In this work, a novel data-driven approach for control variable (CV) selection was proposed and applied to reservoir waterflooding process for a feedback strategy resulting in optimal or near optimal operation. The results indicated that the feedback control method was close to optimal in the absence of uncertainty. The loss recorded in the value of performance index, net present value (NPV) was only 0.26%. Furthermore, the new strategy performs better than the open-loop optimal control solution when system/model mismatch was considered. The performance depends on the scale of the uncertainty introduced. A gain in NPV as high as 30.04% was obtained.展开更多
Deepwater oilfields will become main sources of the world's oil and gas production.It is characterized with high technology,huge investment,long duration,high risk and high profit.It is a huge system project,inclu...Deepwater oilfields will become main sources of the world's oil and gas production.It is characterized with high technology,huge investment,long duration,high risk and high profit.It is a huge system project,including exploration and appraising,field development plan(FDP)design,implementation,reservoir management and optimization.Actually,limited data,international environment and oil price will cause much uncertainty for FDP design and production management.Any unreasonable decision will cause huge loss.Thus,risk foreseeing and mitigation strategies become more important.This paper takes AKPO and EGINA as examples to analyze the main uncertainties,proposes mitigation strategies,and provides valuable experiences for the other deepwater oilfields development.展开更多
The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well produc...The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.展开更多
Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies object...Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies objectively in China and the United States,we clarified the progress and stage of tight oil and gas exploration and development in China,and envisaged the future development orientation of theory and technology,process methods and development policy.In nearly a decade,relying on the exploration and development practice,science and technology research and management innovation,huge breakthroughs have been made.The laws of formation,distribution and accumulation of tight oil and gas have been researched,the development theories such as"multi-stage pressure drop"and"man-made reservoirs"have been established,and several technology series have been innovated and integrated.These technology series include enrichment regions selection,well pattern deployment,single well production and recovery factor enhancement,and low cost development.As a result,both of reserves and production of tight oil and gas increase rapidly.However,limited by the sedimentary environment and tectonic background,compared with North America,China’s tight oil and gas reservoirs are worse in continuity,more difficult to develop and poorer in economic efficiency.Moreover,there are still some gaps in reservoir identification accuracy and stimulating technology between China and North America.In the future,Chinese oil and gas companies should further improve the resource evaluation method,tackle key technologies such as high-precision 3D seismic interpretation,man-made reservoir,and intelligent engineering,innovate theories and technologies to enhance single well production and recovery rate,and actively endeavor to get the finance and tax subsidy on tight oil and gas.展开更多
文摘Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.
文摘Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges.The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model.This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode.The overall regional process design adheres to the design concept of"environmental protection,efficiency,and innovation",strictly follows the design specifications,and combines reservoir engineering and oil production engineering programs,oil and gas physical properties and chemical composition,product programs,ground natural conditions,etc.According to the technical and economic analysis and comparison of area A,this paper has worked out a suitable surface engineering construction,pipeline network layout and oil and gas gathering and transportation plan for area A.Some auxiliary management recommendations are also proposed in this paper,like sand prevention management and HSE management for carbonate reservoirs.
文摘The oil oxidation characteristics of the whole temperature regions from 30 ℃ to 600 ℃ during oil reservoir air injection were revealed by experiments. The whole oil oxidation temperature regions were divided into four different parts: dissolving and inflation region, low temperature oxidation region, medium temperature oxidation region and high temperature oxidation region. The reaction mechanisms of different regions were explained. Based on the oil oxidation characteristics and filed tests results, light oil reservoirs air injection development methods were divided into two types: oxygen-reducing air flooding and air flooding;heavy oil reservoirs air injection in-situ combustion development methods were divided into two types: medium temperature in-situ combustion and high temperature in-situ combustion. When the reservoir temperature is lower than 120 ℃, oxygen-reducing air flooding should be used for light oil reservoir development. When the reservoir temperature is higher than 120 ℃, air flooding method should be used for light oil reservoir development. For a normal heavy oil reservoir, when the combustion front temperature is lower than 400 ℃, the development method is medium temperature in-situ combustion. For a heavy oil reservoir with high oil resin and asphalting contents, when the combustion front temperature is higher than 450 ℃, the development method at this condition is high temperature in-situ combustion. Ten years field tests of air injection carried out by PetroChina proved that air has advantages in technical, economical and gas source aspects compared with other gas agents for oilfield gas injection development. Air injection development can be used in low/super-low permeability light oil reservoirs, medium and high permeability light oil reservoirs and heavy oil reservoirs. Air is a very promising gas flooding agent.
基金Supported by Sinopec Key Science and Technology Research Project(P21060)。
文摘The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.
基金Supported by the China National Science and Technology Major Project(2016ZX05023)Petro China Science and Technology Major Project(2018E-1809)。
文摘By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.
基金Supported by Open Fund(PLC20190203)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)the Natural Science Foundation of Shaanxi Province,China(2006Z07,2010JM5003)Youth Science and Technology Innovation Fund Project of Xi’an Petroleum University(2012BS010)
文摘Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.
基金Funded by the National Key Basic Research and Development Program(973 Program),China(Grant 2014CB239000)China National Science and Technology Major Project(Grant 2011ZX05001)
文摘The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.
基金Supported by the CNPC Basic and Prospective Project (2021DJ45)。
文摘The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.
文摘Miyun Reservoir was designated as the water source of Beijing City in 1982. Since that time, socio economic development in Miyun Area has been slowing due to the restriction of severe environmental standards. More and more attention from the public and government has been paid to the regional sustainable development. And an effective planning for the local society management system is urgently desired. In this study, a regional sustainable development system dynamics model, named MiyunSD, is developed for supporting this planning task. MiyunSD consists of dynamic simulation models that explicitly consider information feedback that governs interactions in the system. Such models are capable of simulating the system′s behavior and predicting its developing situation of the future. For the study case, interactions among a number of system components within a time frame of fifteen years are examined dynamically. Three planning alternatives are carefully considered. The base run is based on an assumption that the existing pattern of human activities will prevail in the entire planning horizon, and the other alternatives are based on previous and present planning studies. The different alternatives will get different system′s environmental and socio economic results. Through analyzing these dynamic results, local authorities may find an optimal way to realize the objectives that the regional environment will be well protected and at the same time the economy will be rapidly developed.
文摘As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2014CB239000)China National Science and Technology Major Project(2016ZX05046)
文摘Continental shale strata in China are rich in petroleum resources and are an important area to strengthen domestic oil exploration and development.Based on the latest progress in geological research and exploration and development of petroleum inside continental source kitchens of China National Petroleum Corporation exploration areas in recent two years,we have achieved the following results:(1)The geological connotations of continental hydrocarbon accumulation inside source kitchen and"sweet spot"have been proposed.The intra-source petroleum accumulation refers to the accumulation of liquid-rich hydrocarbons retained or captured in the continental organic-rich shale strata,and"sweet spot"refers to the favorable reservoir with higher oil content,better physical properties,easier to stimulate and higher in commercial development value in the overall oil-bearing continental source rock series,they can be divided into three types,interlayer,hybrid sediment and shale.(2)High-quality shale formations in both salt water and freshwater lacustrine basins can generate hydrocarbons on a large scale,shale strata have multiple types of favorable reservoirs with large-scale storage capacity,the intra-source shale strata are overall oil-bearing and large in resource scale,and there are multiple favorable shale series for development.The exploration and development practice is propelling the formation of a series of exploration and development key technologies with"sweet spot exploration"and"volume development"as the core.Some pilot tests of these technologies have provided an important scientific basis for the economic and effective development of hydrocarbon accumulation inside source kitchen,and popularization of these technologies have achieved encouraging results preliminarily.(3)Two types of continental intra-source petroleum resources in China have great potential,including medium-high maturity with liquid-rich hydrocarbons and medium-low maturity with organic-rich matter.The Ordos,Songliao,Bohai Bay and Junggar basins are the main areas of these resources.By addressing the theoretical and technical challenges in the exploration and development,the two types of resources inside continental source kitchens will become the realistic and major strategic replacement oil resources respectively in the future.
文摘Oil formation volume factor(OFVF)is considered one of the main parameters required to characterize the crude oil.OFVF is needed in reservoir simulation and prediction of the oil reservoir performance.Existing correlations apply for specific oils and cannot be extended to other oil types.In addition,big errors were obtained when we applied existing correlations to predict the OFVF.There is a massive need to have a global OFVF correlation that can be used for different oils with less error.The objective of this paper is to develop a new empirical correlation for oil formation volume factor(OFVF)prediction using artificial intelligent techniques(AI)such as;artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS),and support vector machine(SVM).For the first time we changed the ANN model to a white box by extracting the weights and the biases from AI models and form a new empirical equation for OFVF prediction.In this paper we present a new empirical correlation extracted from ANN based on 760 experimental data points for different oils with different compositions.The results obtained showed that the ANN model yielded the highest correlation coefficient(0.997)and lowest average absolute error(less than 1%)for OFVF prediction as a function of the specific gravity of gas,the dissolved gas to oil ratio,the oil specific gravity,and the temperature of the reservoir compared with ANFIS and SVM.The developed empirical equation from the ANN model outperformed the previous empirical correlations and AI models for OFVF prediction.It can be used to predict the OFVF with a high accuracy.
基金the NSFC(National Natural Science Foundation of China)for supporting this article through two projects:the National Science Fund for Young Scholars of China(Grant No.51304164)“Research on the pressure dynamics of multiple-acidized-fractured horizontal wells in fractured-vuggy carbonate formations”+2 种基金the National Science Fund for Distinguished Young Scholars of China(Grant No.51525404),“Fracturing and acidizing in low permeability and tight reservoirs”financially supported by the Fok Ying Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.151050)financially supported by a basic research project under Grant No.2015JY0132 from the Science and Technology Department of Sichuan Province.
文摘Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated through deduction of equilibrium equation and presentation of equilibrium curves with an“equilibrium point”.Influences of artificial controllable factors(e.g.well ratio of injection to production and total well number)on equilibrium were particularly analyzed using field data.It was found that the influences were mainly reflected as the location move of equilibrium point with factor change.Then reservoir pressure maintenance level was especially introduced to reveal the variation law of liquid rate and oil rate with the rising of water cut.It was also found that,even if reservoir pressure kept constant,oil rate still inevitably declined.However,in the field,a stabilized oil rate was always pursued for development efficiency.Therefore,the equilibrium issue of stabilized oil production was studied deeply through probing into some effective measures to realize oil rate stability after the increase of water cut for the example reservoir.Successful example application indicated that the integrated approach was very practical and feasible,and hence could be used to the other similar reservoir.
基金supported by Petroleum Technology Development(PTDF),Abuja
文摘Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as production progresses which require varying injection and production settings for economic recovery. As water is injected into the reservoir, more oil is expected to be produced. There is also likelihood that water is produced in association with the oil. The worst case is when the injected water meanders through the reservoir, it bypasses pools of oil and gets produced, Therefore, any effort geared toward finding the optimal settings to maximize the value of this venture can never be over emphasized. Waterflooding can be formulated as an optimal control problem. However, traditional optimal control is an open-loop solution, hence cannot cope with various uncertainties inevitably existing in any practical systems. Reservoir models are highly uncertain. Its properties are known with some degrees of certainty near the well-bore region only. In this work, a novel data-driven approach for control variable (CV) selection was proposed and applied to reservoir waterflooding process for a feedback strategy resulting in optimal or near optimal operation. The results indicated that the feedback control method was close to optimal in the absence of uncertainty. The loss recorded in the value of performance index, net present value (NPV) was only 0.26%. Furthermore, the new strategy performs better than the open-loop optimal control solution when system/model mismatch was considered. The performance depends on the scale of the uncertainty introduced. A gain in NPV as high as 30.04% was obtained.
文摘Deepwater oilfields will become main sources of the world's oil and gas production.It is characterized with high technology,huge investment,long duration,high risk and high profit.It is a huge system project,including exploration and appraising,field development plan(FDP)design,implementation,reservoir management and optimization.Actually,limited data,international environment and oil price will cause much uncertainty for FDP design and production management.Any unreasonable decision will cause huge loss.Thus,risk foreseeing and mitigation strategies become more important.This paper takes AKPO and EGINA as examples to analyze the main uncertainties,proposes mitigation strategies,and provides valuable experiences for the other deepwater oilfields development.
文摘The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.
基金Supported by the China National Science and Technology Major Project(2016ZX05015,2016ZX05047,2017ZX05001).
文摘Through reviewing the development history of tight oil and gas in China,summarizing theoretical understandings in exploration and development,and comparing the geological conditions and development technologies objectively in China and the United States,we clarified the progress and stage of tight oil and gas exploration and development in China,and envisaged the future development orientation of theory and technology,process methods and development policy.In nearly a decade,relying on the exploration and development practice,science and technology research and management innovation,huge breakthroughs have been made.The laws of formation,distribution and accumulation of tight oil and gas have been researched,the development theories such as"multi-stage pressure drop"and"man-made reservoirs"have been established,and several technology series have been innovated and integrated.These technology series include enrichment regions selection,well pattern deployment,single well production and recovery factor enhancement,and low cost development.As a result,both of reserves and production of tight oil and gas increase rapidly.However,limited by the sedimentary environment and tectonic background,compared with North America,China’s tight oil and gas reservoirs are worse in continuity,more difficult to develop and poorer in economic efficiency.Moreover,there are still some gaps in reservoir identification accuracy and stimulating technology between China and North America.In the future,Chinese oil and gas companies should further improve the resource evaluation method,tackle key technologies such as high-precision 3D seismic interpretation,man-made reservoir,and intelligent engineering,innovate theories and technologies to enhance single well production and recovery rate,and actively endeavor to get the finance and tax subsidy on tight oil and gas.