期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel oil spill detection method from synthetic aperture radar imageries via a bidimensional empirical mode decomposition 被引量:2
1
作者 YANG Yonghu LI Ying ZHU Xueyuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期86-94,共9页
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark... Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately. 展开更多
关键词 bidimensional empirical mode decomposition synthetic aperture radar image detection of oil spill hilbert spectral analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部