The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemica...The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
The e ects of CO2 and salt type on the interfacial tension(IFT) between crude oil and carbonated brine(CB) have not been fully understood. This study focuses on measuring the dynamic IFT between acidic crude oil with ...The e ects of CO2 and salt type on the interfacial tension(IFT) between crude oil and carbonated brine(CB) have not been fully understood. This study focuses on measuring the dynamic IFT between acidic crude oil with a total acid number of 1.5 mg KOH/g and fully CO2-saturated aqueous solutions consisting of 15,000 ppm of KCl, NaCl, CaCl2 and MgCl2 at 30 °C and a wide range of pressures(500–4000 psi). The results of IFT measurements showed that solvation of CO2 into all the studied aqueous solutions led to an increase in IFT of acidic crude oil(i.e., comparison of IFT of crude oil/CB and crude oil/brine), while no significant e ect was observed for pressure. In contrast, the obtained results of studied salts indicated a positive e ect on the IFT reduction of acidic crude oil/carbonated water(CW)(i.e., comparison of IFT of crude oil/CB and crude oil/CW).展开更多
Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment ...Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t...This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.展开更多
Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitu...Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitumen extraction process, there are a lot of surfactant molecules in the tailing water. The surfactants from oil sands industry have brought a potential threat to the environment and human health. Depending on the performance of surfactant at the interface, this work focuses on removing these harmful surfactants from the tailing water and not bringing other possible hazardous substances. Moreover, a mathematical model is built to calculate the removal efficiency of the surfactant. The time required for removing the surfactant is determined experimentally. In conclusion, most of surfactant molecules are adsorbed at the oil/water interface. The fraction of the surfactant staying at the oil/water interface is high. Most of the surfactants in tailing water can be eliminated. The time of surfactant migration can be used for setting up the update time of the oil film in the automatic instrument, which can be designed in the future.展开更多
A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving...A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.展开更多
A new ultra-long chain monounsaturated 4-(N-nervonicamidopropyl-N,N-dimethylammonium)butane sulfonate(NDAS)zwitterionic surfactant with ultralow interfacial tensions was developed through the modification of nervonic ...A new ultra-long chain monounsaturated 4-(N-nervonicamidopropyl-N,N-dimethylammonium)butane sulfonate(NDAS)zwitterionic surfactant with ultralow interfacial tensions was developed through the modification of nervonic acid derived from renewable non-edible seed oils by a simple and effective method.Its structure was characterized by ESI-HRMS,1 H NMR,and 13 C NMR.NDAS surfactant exhibited a strong interfacial activity(~10^(-4) mN/m)between the crude oil and the formation brine at a very low surfactant dosage(0.05 g/L)and at high salinity conditions,which is equivalent to 2%(w/w)of dosage of the most traditional surfactants used in the enhanced oil recovery field.Meanwhile,at a very low concentration(0.05 g/L),NDAS demonstrated strong NaCl compatibility up to 100 g/L,Ca^(2+)ions compatibility up to 200 mg/L,and temperature stability up to 90℃.The surface tension,emulsification,and biodegradability parameters were also evaluated.This work consolidates our hypothesis that increasing the hydrophobic chain length of a surfactant certainly contributes to the high interfacial activity and good compatibility of salts and temperatures.Hence,it will facilitate the design of a sustainable alternative to petroleum-based chemicals to develop bio-based surfactants and extend the domain of bio-based surfactants to new applications such as in enhanced oil recovery(EOR).展开更多
In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of ...In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of oil. However, the adsorption of the surfactants to reservoir rock surfaces leads to the loss and reduction in concentration of the surfactants, which in turn reduces the overall efficiency of the oil recovery process, with attendant financial losses. In this work, the adsorption of Quillaja Saponaria (QS), a novel, natural, non-ionic surfactant, on crushed sandstone reservoir rock is investigated. X-ray diffraction (XRD) study of clean sandstone particles has been undertaken to determine the main components present in the sand particles. The conductivity method was used to measure CMC and the surfactant concentrations in aqueous solutions. Batch adsorption experiments were used to determine the amount of QS adsorbed on rock surface. Equilibrium conditions were reached after almost 5 days. From the results of the study, the Langmuir isotherm model is more suited for predicting the adsorption behaviour of QS on sandstone. The kinetic adsorption of QS obeys the pseudo-second order model. This study is particularly relevant in surfactant selection for chemical EOR processes.展开更多
Surfactant flooding is an enhanced oil recovery(EOR)method for recovering residual oil in the reservoir through mechanism of interfacial tension(IFT)reduction and wettability alteration.Due to toxicity and high cost a...Surfactant flooding is an enhanced oil recovery(EOR)method for recovering residual oil in the reservoir through mechanism of interfacial tension(IFT)reduction and wettability alteration.Due to toxicity and high cost associated with conventional surfactants,recent research has focussed on developing low-cost and environmentally benign surfactants.Herein,a low-cost green surfactant is extracted from Vernonia Amygdalina(VA)and appraised for EOR applications.The extracted surfactant was characterized using Fourier Transform Infrared(FTIR)and High-Pressure Liquid Chromatography(HPLC).The IFT of the synthesized surfactant at the oil-water interface was determined using Kruss tensiometer.Additionally,the foam stability of the synthesized surfactant was examined.Moreover,the wettability of the saponin based natural surfactant(SBNS)at the rock-fluid interface was analysed using Dataphysics drop shape analyser.Experimental result revealed that SBNS(1 wt%concentration)stabilized foam for longer periods with half-life of 1100 min.Furthermore,the synthesized surfactant was effective in lowering the IFT of oil-water interface from 18 mN/m to 0.97 mN/m.Finally,SBNS altered the wettability of sandstone cores to water-wetting condition by reducing the contact angle from 118.5° to 45.7°.Overall,SBNS exhibit excellent properties desirable for EOR and thereby recommended as supplementary alternative to conventional surfactants.展开更多
基金Supported by the National Key Basic Research Programme (No.973-G1999022505),University of Petroleum Basic Research Fund(No.ZX9904)
文摘The vacuum residual from Iranian Light crude oil are separated into a series of 16 narrow fractions according to the molecular weight by the supercritical fluid extraction and fractional (SFEF) technology. The chemical element and the UV spectrum of each fraction are analyzed. The effects of several factors on the interfacial tension are investigated, which are the fraction concentration in oil phase, the ratio of oil component, the salts dissolved in the water phase and the pH value. The interfacial tension decreases rapidly as the concentration of the residual fraction in the oil increases, showing a higher interfacial activity of the fraction. The interfacial tension changes, as the amount of absorption or the state of the fractions in the interface changes resulting from different ratios of oil, different kinds or concentrations of salts in water, and different pH values. It is concluded that the interfacial tension changes regularly, corresponding to the regular molecular parameters of the vacuum residual fractions.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
文摘The e ects of CO2 and salt type on the interfacial tension(IFT) between crude oil and carbonated brine(CB) have not been fully understood. This study focuses on measuring the dynamic IFT between acidic crude oil with a total acid number of 1.5 mg KOH/g and fully CO2-saturated aqueous solutions consisting of 15,000 ppm of KCl, NaCl, CaCl2 and MgCl2 at 30 °C and a wide range of pressures(500–4000 psi). The results of IFT measurements showed that solvation of CO2 into all the studied aqueous solutions led to an increase in IFT of acidic crude oil(i.e., comparison of IFT of crude oil/CB and crude oil/brine), while no significant e ect was observed for pressure. In contrast, the obtained results of studied salts indicated a positive e ect on the IFT reduction of acidic crude oil/carbonated water(CW)(i.e., comparison of IFT of crude oil/CB and crude oil/CW).
文摘Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金Kuwait University General Research Facilities (GE01/17,GE01/07,and GS03/01)for their support in conducting the necessary experimental work of this study。
文摘This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.
文摘Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitumen extraction process, there are a lot of surfactant molecules in the tailing water. The surfactants from oil sands industry have brought a potential threat to the environment and human health. Depending on the performance of surfactant at the interface, this work focuses on removing these harmful surfactants from the tailing water and not bringing other possible hazardous substances. Moreover, a mathematical model is built to calculate the removal efficiency of the surfactant. The time required for removing the surfactant is determined experimentally. In conclusion, most of surfactant molecules are adsorbed at the oil/water interface. The fraction of the surfactant staying at the oil/water interface is high. Most of the surfactants in tailing water can be eliminated. The time of surfactant migration can be used for setting up the update time of the oil film in the automatic instrument, which can be designed in the future.
基金supported by the National Key R&D Program of China(2018YFA0702400)National Natural Science Foundation of China(5207040347).
文摘A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFB0308900)the National Natural Science Foundation of China (No. 51574125)+1 种基金the Fundamental Research Funds for the Central Universities of China (No. 50321101917017)provided by Research Program of State Key Laboratory of Bioreactor Engineering
文摘A new ultra-long chain monounsaturated 4-(N-nervonicamidopropyl-N,N-dimethylammonium)butane sulfonate(NDAS)zwitterionic surfactant with ultralow interfacial tensions was developed through the modification of nervonic acid derived from renewable non-edible seed oils by a simple and effective method.Its structure was characterized by ESI-HRMS,1 H NMR,and 13 C NMR.NDAS surfactant exhibited a strong interfacial activity(~10^(-4) mN/m)between the crude oil and the formation brine at a very low surfactant dosage(0.05 g/L)and at high salinity conditions,which is equivalent to 2%(w/w)of dosage of the most traditional surfactants used in the enhanced oil recovery field.Meanwhile,at a very low concentration(0.05 g/L),NDAS demonstrated strong NaCl compatibility up to 100 g/L,Ca^(2+)ions compatibility up to 200 mg/L,and temperature stability up to 90℃.The surface tension,emulsification,and biodegradability parameters were also evaluated.This work consolidates our hypothesis that increasing the hydrophobic chain length of a surfactant certainly contributes to the high interfacial activity and good compatibility of salts and temperatures.Hence,it will facilitate the design of a sustainable alternative to petroleum-based chemicals to develop bio-based surfactants and extend the domain of bio-based surfactants to new applications such as in enhanced oil recovery(EOR).
文摘In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of oil. However, the adsorption of the surfactants to reservoir rock surfaces leads to the loss and reduction in concentration of the surfactants, which in turn reduces the overall efficiency of the oil recovery process, with attendant financial losses. In this work, the adsorption of Quillaja Saponaria (QS), a novel, natural, non-ionic surfactant, on crushed sandstone reservoir rock is investigated. X-ray diffraction (XRD) study of clean sandstone particles has been undertaken to determine the main components present in the sand particles. The conductivity method was used to measure CMC and the surfactant concentrations in aqueous solutions. Batch adsorption experiments were used to determine the amount of QS adsorbed on rock surface. Equilibrium conditions were reached after almost 5 days. From the results of the study, the Langmuir isotherm model is more suited for predicting the adsorption behaviour of QS on sandstone. The kinetic adsorption of QS obeys the pseudo-second order model. This study is particularly relevant in surfactant selection for chemical EOR processes.
基金The authors would like to thank the Ministry of Higher Education(MOHE)Malaysia and Universiti Teknologi Malaysia(UTM)for theirfinancial support through Research Management Grants Vot.No.R.J130000.3551.07G52,R.J130000.3551.06G68&06G69.
文摘Surfactant flooding is an enhanced oil recovery(EOR)method for recovering residual oil in the reservoir through mechanism of interfacial tension(IFT)reduction and wettability alteration.Due to toxicity and high cost associated with conventional surfactants,recent research has focussed on developing low-cost and environmentally benign surfactants.Herein,a low-cost green surfactant is extracted from Vernonia Amygdalina(VA)and appraised for EOR applications.The extracted surfactant was characterized using Fourier Transform Infrared(FTIR)and High-Pressure Liquid Chromatography(HPLC).The IFT of the synthesized surfactant at the oil-water interface was determined using Kruss tensiometer.Additionally,the foam stability of the synthesized surfactant was examined.Moreover,the wettability of the saponin based natural surfactant(SBNS)at the rock-fluid interface was analysed using Dataphysics drop shape analyser.Experimental result revealed that SBNS(1 wt%concentration)stabilized foam for longer periods with half-life of 1100 min.Furthermore,the synthesized surfactant was effective in lowering the IFT of oil-water interface from 18 mN/m to 0.97 mN/m.Finally,SBNS altered the wettability of sandstone cores to water-wetting condition by reducing the contact angle from 118.5° to 45.7°.Overall,SBNS exhibit excellent properties desirable for EOR and thereby recommended as supplementary alternative to conventional surfactants.