期刊文献+
共找到19,417篇文章
< 1 2 250 >
每页显示 20 50 100
Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation 被引量:9
1
作者 Huiwen Meng Tao Yan +1 位作者 Jingang Yu Feipeng Jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期957-963,共7页
Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functio... Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water. 展开更多
关键词 Graphene oxide n-Dodecyltrimethoxysilane Polyurethane sponge SUPER-HYDROPHOBICITY oil/water separation
下载PDF
The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation
2
作者 Xiaodong Yang Na Yang +4 位作者 Ziqiang Gong Feifei Peng Bin Jiang Yongli Sun Luhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期296-305,共10页
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific... In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water. 展开更多
关键词 Superhydrophobic sponge Ni-Co double layered oxides Thiol modification oil absorption oil/water separation
下载PDF
Quantitatively probing interactions between membrane with adaptable wettability and oil phase in oil/water separation
3
作者 Zhong-Zheng Xu Ming-Wei Zhao +6 位作者 Yi-Ning Wu Jia-Wei Liu Ning Sun Zi-Zhao Wang Yi-Ming Zhang Lin Li Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2564-2574,共11页
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana... The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation. 展开更多
关键词 Adaptable wettability Selective oil/water separation Interface interaction Probe AFM technique
下载PDF
Highly Durable Ag-CuO Heterostructure-Decorated Mesh for Efficient Oil/Water Separation and In Situ Photocatalytic Dye Degradation
4
作者 Jiakai Li Changpeng Lv +2 位作者 Xuehua Liu Zhengbo Jiao Na Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期611-619,共9页
It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this ... It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this work,a Ag-CuO heterostructure-decorated mesh was fabricated via facile alkali etchingcalcination and photoreduction approaches.The as-synthesized mesh with superhydrophilicity and underwater superoleophobicity displayed high separation efficiency(>99.998%)for diverse oil/water mixtures.Besides,it demonstrated more superior photocatalytic performance in dye degradation than those of bare CuO nanostructure-coated materials,which is primarily attributed to the intensive visible light harvesting and efficient electron-holes separation occurred on noble metal-semiconductor heterostructures.Furthermore,on account of the tenacity of Cu substrate as well as enhanced structural stability,this binary composite-decorated mesh exhibited highly reliable durability and robustness after 10 cycles of photocatalytic degradation tests,and even being ultrasonic worn for 30 min.More importantly,our developed mesh was capable of in situ catalytic degrading water-soluble organic dyes during oil/water separation under visible light irradiation.Therefore,such a dexterous and feasible strategy may afford a new route to construct bifunctional and predurable materials for actual sewage purification. 展开更多
关键词 Ag-CuO heterostructures highly durable in situ bifunctional oil/water separation photocatalytic dye degradation
下载PDF
Superhydrophobic Micro/Nanostructured Copper Mesh with Self-Cleaning Property for E ective Oil/Water Separation 被引量:1
5
作者 Tai-heng Zhang Tao Yan +2 位作者 Guo-qing Zhao Wenjihao Hu Fei-peng Jiao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期635-642,共8页
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom... In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation. 展开更多
关键词 SUPERHYDROPHOBICITY MICRO/NANOSTRUCTURE TUNGSTEN TRIOXIDE SELF-CLEANING oil/water separation
下载PDF
Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation
6
作者 Taoyan Mao Runhui Xiao +5 位作者 Peng Liu Jiale Chen Junqiang Luo Su Luo Fengwei Xie Cheng Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期73-83,共11页
Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, t... Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation. 展开更多
关键词 Superhydrophobic fabrics Silicon polyurethane membrane DURABILITY separation POLYMERS Waster water
下载PDF
Superhydrophobic melamine sponge prepared by radiation-induced grafting technology for efficient oil-water separation
7
作者 Ying Sun Wen-Rui Wang +7 位作者 Dan-Yi Li Si-Yi Xu Lin Lin Man-Li Lu Kai Fan Chen-Yang Xing Lin-Fan Li Ji-Hao Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期103-114,共12页
This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil... This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup. 展开更多
关键词 Radiation-induced graft polymerization oilwater separation SPONGE SUPERHYDROPHOBIC
下载PDF
Purification of Produced Water from a Sour Oilfield in South Kuwait. 1. Oil-Water Separation and Industrial Salt Production
8
作者 Feras Al Salem Hessa Al Shamsi +5 位作者 Mariam Mohammed Abdulla Alaryani Basmalah Abdelazim Mohamed Khalaf Omnia Elsheikh Vijo Poulose Yosef Al Jasem Thies Thiemann 《Journal of Water Resource and Protection》 CAS 2024年第2期156-180,共25页
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified... Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation. 展开更多
关键词 Produced water oil and Gas Adsorption Filtration CRYSTALLIZATION
下载PDF
Purification of Produced Water from a Sour Oilfield in South Kuwait. 2. Oil-Water Separation and Crystallization of Calcium Carbonate
9
作者 Feras Al Salem Najood Almansoori +4 位作者 Hanifa AlBalooshi Nouf Alshehhi Maitha Almheiri Vijo Poulose Thies Thiemann 《Journal of Water Resource and Protection》 CAS 2024年第7期467-488,共22页
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ... Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm. 展开更多
关键词 Produced water oil and Gas Bleached Biomass Adsorption Filtration Crystallization of Calcium Chloride
下载PDF
OIL/WATER SEPARATION IN A LIQUID-LIQUID CYLINDRICAL CYC-LONE 被引量:20
10
作者 LIU Hai-fei XU Jing-yu +3 位作者 ZHANG Jun SUN Huan-qiang ZHANG Jian WU Ying-xiang 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第1期116-123,共8页
The oil/water separation in a liquid-liquid cylindrical cyclone is experimentally studied in this article.The effects of the flow split-ratio and the flow rate on the oil/water separation performance are determined.Fr... The oil/water separation in a liquid-liquid cylindrical cyclone is experimentally studied in this article.The effects of the flow split-ratio and the flow rate on the oil/water separation performance are determined.From the experimental results,it is shown that with the increase of the flow split-ratio,the oil/water separation efficiency is enhanced at first,and an optimal flow split-ratio exists,beyond that optimal split-ratio,the watercut in the underflow keeps constant,while the oil content in the overflow begins to decrease.The process of the oil core structure formation and the phase distribution in the cyclone are determined by numerical simulations.Furthermore,the dependence of the separation efficiency on the Reynolds number and the flow split-ratio is investigated based on a dimensional analysis.A comparison between the predicted values and the experimental data shows a good agreement. 展开更多
关键词 cylindrical cyclone oil/water separation flow split-ratio flow rate watercut
原文传递
Fouling-resistant Composite Membranes for Separation of Oil-in-water Microemulsions 被引量:8
11
作者 王枢 褚良银 陈文梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期37-45,共9页
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ... Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning. 展开更多
关键词 composite membranes fouling-resistant oil/water separation MICROEMULSION interracial polymerization
下载PDF
Advanced Electrospun Nanofibrous Materials for Efficient Oil/Water Separation 被引量:8
12
作者 Ying Su Tingting Fan +3 位作者 Wenying Cui Yanan Li Seeram Ramakrishna Yunze Long 《Advanced Fiber Materials》 SCIE EI 2022年第5期938-958,共21页
The frequent occurrence of crude oil leakage accidents and the massive discharge of industrial oily wastewater not only caused huge damage and pollution to the ecosystem but also wasted a lot of precious resources.The... The frequent occurrence of crude oil leakage accidents and the massive discharge of industrial oily wastewater not only caused huge damage and pollution to the ecosystem but also wasted a lot of precious resources.Therefore,it is urgent to solve the worldwide problem of oil/water separation.As a leader in advanced fiber materials,nanofibrous materials prepared by electrospinning have the advantages of high permeability,high separation efficiency,large specific surface area,adjustable wettability,simple preparation process,and low cost,making it attracted more attention of researchers in oil/water separation.This article mainly reviews the recent progress of various electrospun nanofibrous materials for oil/water separation field.The preparation and synthesis of nanofibrous adsorbents,nanofibrous membranes,and nanofibrous aerogels in recent years based on different applications,design principles,and separation approaches are systematically summarized.Finally,this review discusses the challenges and future development directions in oil/water separation. 展开更多
关键词 oil/water separation ELECTROSPINNING Nanofibrous adsorbents Membranes AEROGELS
原文传递
Fast processing nylon mesh by surface diffuse atmospheric plasma for large-area oil/water separation 被引量:2
13
作者 Linfeng Yang Yaping Feng +4 位作者 Zengyi He Xinyan Jiang Xianfeng Luo Haoyu Dai Lei Jiang 《Nano Research》 SCIE EI CSCD 2023年第7期9625-9632,共8页
In recent years,numerous studies have been reported for oil/water separation,such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation.However,for the reco... In recent years,numerous studies have been reported for oil/water separation,such as superoleophilic materials for oil absorption and underwater superoleophobic membranes for continuous separation.However,for the recovery of oil slick pollution on near-shore ocean surface caused by various reasons,large area and fast availability of used materials are needed to be considered.Herein,we report an efficient and environmentally friendly method to fast process nylon mesh by surface diffuse atmospheric plasma(SDAP)for large-area oil/water separation.Nylon mesh is funcionalized by atmospheric plasma to generate micro/nano composite structures on the surface,resulting in superhydrophilicity and underwater superoleophobicity within only seconds.The pre-wetted modified nylon mesh can achieve high efficiency(>99.9%)and circulating water flux(~30,000 L·m^(-2)·h^(-1)),with high intrusion pressure(~3 kPa)and universality in oil/water separation.Regular plasma unconditionally generated in the atmosphere with the merit of efficiently functionalizing surface has the potential of large-area materials treatment.This study might take one step further for large-area industrial oily wastewater recovery and even oil slicks collection in near-shore water bodies. 展开更多
关键词 superwettability oil/water separation surface modification atmospheric plasma
原文传递
Smart Cotton Fabric with CO_(2)-Responsive Wettability for Controlled Oil/Water Separation 被引量:2
14
作者 Liping Liang Yanyan Dong +1 位作者 Hongfang Wang Xu Meng 《Advanced Fiber Materials》 CAS 2019年第3期222-230,共9页
Stimuli-responsive materials with switchable wettability have promising practical applications in oil/water separation.A novel CO_(2)-responsive cotton fabric for controlled oil/water separation was fabricated based o... Stimuli-responsive materials with switchable wettability have promising practical applications in oil/water separation.A novel CO_(2)-responsive cotton fabric for controlled oil/water separation was fabricated based on mussel-inspired reaction and polymerized with 2-(dimethylamino)ethyl methacrylate(DMAEMA).As expected,the modified fabric exhibited switchable hydrophilicity and hydrophobicity after CO_(2)/N_(2) alternation,and it could be used for gravity-driven CO_(2)-controlled oil/water separation.Water was selectively penetrated through the fabric and separated from oil after treating by CO_(2).A reversed wettability could be generated through simply treated with N2.It is expected that the as-prepared fabrics could be applied in smart oil/water separation due to the attractive properties of CO_(2)-switchable system. 展开更多
关键词 Bioinspired fabric Fiber CO_(2)-responsiv oil/water separation
原文传递
Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures 被引量:1
15
作者 Hammad Saulat Jianhua Yang +3 位作者 Tao Yan Waseem Raza Wensen Song Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期242-252,共11页
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ... Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation. 展开更多
关键词 Corrosion Dodecyltrimethoxysilane Hexadecyltrimethoxysilane Membranes oil/water separation ZEOLITE
下载PDF
Molecular and nanostructure designed superhydrophilic material with unprecedented antioil-fouling property for diverse oil/water separation 被引量:1
16
作者 WANG ZheCun GUAN Min +2 位作者 YANG Xin LI HanZhen WANG LaiGui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第6期1273-1282,共10页
The design and development of new advanced superwetting porous membranes with antioil-fouling performance are still rare and highly desirable because of their potential widespread applications.A metallic phosphate nan... The design and development of new advanced superwetting porous membranes with antioil-fouling performance are still rare and highly desirable because of their potential widespread applications.A metallic phosphate nanoflower-covered mesh membrane with superhydrophilic and unprecedented antioil-fouling properties is prepared by an exceptionally simple and effective in-situ solution corrosion method.As demonstrated,the outstanding antioil-fouling property of the resulting mesh membrane is connected with the special phosphate group and the three-dimensional(3 D) nanoflower structure.Owing to the antioil-fouling property,upon to water,the oil-fouled mesh membrane can keep the surface free of various kinds of oils,including viscous crude oil to light n-hexane.Thanks to its unprecedented self-cleaning property,the superhydrophilic mesh membrane can effectively separate different oil/water mixtures without prior wetted by water,exhibiting great potential for practical spilled oil remediation. 展开更多
关键词 crude oil/water separation inorganic membrane antioil-fouling property metallic phosphate nanoflowers oil spill remediation
原文传递
Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux 被引量:1
17
作者 Jiawei Wang Jie Hu +2 位作者 Junjie Cheng Zefei Huang Baoqian Ye 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第1期46-55,共10页
Because of the increasing amount of oily wastewater produced each day,it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation effic... Because of the increasing amount of oily wastewater produced each day,it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation efficiency.In this paper,a superhydrophilic/underwater superoleophobic N-isopropylacrylamide-coated stainless steel mesh was prepared through a simple and convenient graft polymerization approach.The obtained mesh was able to separate oil/water mixtures only by gravity.In addition,the mesh showed high-efficiency separation ability(99.2%)and ultrahigh flux(235239 L·m^(−2)·h^(−1)).Importantly,due to the complex cross-linked bilayer structure,the prepared mesh exhibited good recycling performance and chemical stability in highly saline,alkaline and acidic environments. 展开更多
关键词 oil/water separation N-ISOPROPYLACRYLAMIDE stainless steel mesh ultrahigh flux
原文传递
Rapid formation of metal-monophenolic networks on polymer membranes for oil/water separation and dye adsorption
18
作者 Jia-Lu Shen Bing-Pan Zhang +2 位作者 Di Zhou Zhi-Kang Xu Ling-Shu Wan 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3852-3856,共5页
Surface deposition based on metal-phenolic networks(MPNs) has received increasing interest in recent years. The catechol structure is generally considered to be essential to the formation of MPNs. Our most recent resu... Surface deposition based on metal-phenolic networks(MPNs) has received increasing interest in recent years. The catechol structure is generally considered to be essential to the formation of MPNs. Our most recent results have demonstrated that some kinds of monophenols can form MPNs on substrate surfaces.Herein, we report a fast and effective surface-coating system based on the coordination of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid, a kind of monophenol, with Fe^(3+). Compared with other metal ions such as Cu^(2+)and Ni^(2+), Fe^(3+)with stronger electron acceptability can coordinate with the monophenol more strongly to form MPNs, and moreover, the deposition time significantly decreases to 40 min from generally 24 h. It is demonstrated that the deposition process is controlled by the coordination, Fe^(3+)hydrolysis, and deprotonation of the monophenol. The coatings endow substrates such as polypropylene microfiltration membrane with underwater superoleophobicity, which can be applied in oil/water separation with high separation efficiency and great long-term stability. In addition, the coated membranes are positively charged and thus are useful in selective adsorption of dyes. The present work not only provides a novel, fast, and one-step deposition method to fabricate MPNs, but also demonstrates that the fabrication efficiency of monophenol-based MPNs is comparable with that of polyphenol-based MPNs. 展开更多
关键词 Metal-phenolic networks Polymer membrane Surface coating oil/water separation Dye adsorption
原文传递
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
19
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow water–sediment separation structure Grille spacing Performance regulation effect
下载PDF
Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation 被引量:3
20
作者 Lijuan Qiu Ruiyang Zhang +3 位作者 Ying Zhang Chengjin Li Qian Zhang Ying Zhou 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第3期390-399,共10页
Water pollution has become an urgent issue for our modem society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxi... Water pollution has become an urgent issue for our modem society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxide (RGO) wrapped sponge with superhydrophobicity and mechanically flexibility via a facile low-temperature thermal treatment method under a reducing atmosphere. The skeleton of this sponge is completely covered with RGO layers which are closely linked to the skeleton. This sponge has an abundant pore structure, high selectivity, good recyclability, low cost, and outstanding adsorption capacity for floating oil or heavy oil underwater. In addition, this sponge can maintain excellent adsorption performance for various oils and organic solvents over 50 cycles by squeezing, and exhibits extremely high separa- tion efficiencies, up to 6 × 10^6 and 3.6 × 10^6 L·m^-3.h^-1 in non-turbulent and turbulent water/oil systems, respec- tively. This superhydrophobic adsorbent with attractive properties may find various applications, especially in large-scale removal of organic contaminants and oil spill cleanup. 展开更多
关键词 SUPERHYDROPHOBICITY mechanically flexibility water/oil separation reduced graphene oxide wrapped sponge
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部