In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,an...In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.展开更多
In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon...In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.展开更多
The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp...The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.展开更多
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste...One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.展开更多
This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted...This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.展开更多
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ...The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
In oil and gas well drilling operations,it is of great significance to accurately predict the drag coefficient and settling velocity of drill cuttings in non-Newtonian drilling fluids.In this paper,the free-falling of...In oil and gas well drilling operations,it is of great significance to accurately predict the drag coefficient and settling velocity of drill cuttings in non-Newtonian drilling fluids.In this paper,the free-falling of 172 groups of spheres and 522 groups of irregular-shaped sand particles in Newtonian/non-Newtonian fluids were investigated experimentally.It was found that the drag coefficient calculated based on Newtonian correlations can result in a significant error when the particle settles in the non-Newtonian fluid.Therefore,predictive models of drag coefficient were established respectively for different types of fluids.The validity of the proposed drag coefficient model of spheres was verified by comparing it with the previous works.On this basis,the drag coefficient model of irregular-shaped sand particles was established by introducing a shape factor.The models do not use the shape factor that requires detailed threedimensional shape and size information.Instead,two-dimensional geometric information(circularity)is obtained via image analysis techniques.The present new models predict the settling velocity of sand particles in the power-law fluid and Herschel-Bulkley fluid accurately with a mean relative error of5.03%and 6.74%,respectively,which verifies the accuracy of the model.展开更多
Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system ...Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.展开更多
With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just...With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°.展开更多
Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s devel...Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s development but also poses a severe environmental threat. Deep underground re-injection is a cost-effective and efficient method for dealing with hazardous cuttings. Numerous experiments and numerical studies on cuttings re-injection have been conducted in the past thirty years. However, there is still a divergence of views on the fracture development in the process of cuttings re-injection. A comprehensive review of existing studies is necessary to help researchers advance this technology. This paper provides a review of the fundamental studies on fracture behaviors during the deep underground re-injection of drilling cuttings. The limitations of the existing studies are also discussed to inspire new research endeavors.展开更多
As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-fre...As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.展开更多
Objective: To prevent unnecessary laparotomies by evaluating the effectiveness of conservative approach in abdominal trauma cases due to drilling-cutting instruments.Methods: Demographic data, effected region of the b...Objective: To prevent unnecessary laparotomies by evaluating the effectiveness of conservative approach in abdominal trauma cases due to drilling-cutting instruments.Methods: Demographic data, effected region of the body, additional findings of trauma, hemodynamic parameters, duration of admission, diagnostic methods and treatment modalities were retrospectively evaluated in 217 cases with abdominal injury (lower thoracic region, abdominal wall and back) among 1128 victims with drilling-cutting instrument injuries between January 1, 2012 and December 31, 2017. The conservative approach was based on physical examination, hemogram follow-up and hemodynamic evaluation.Results: Totally 177 (81.6%) cases of 217 patients were followed conservatively while 25 cases were operated at early (1-8 hours) and 15 were operated at late (9-48 hours) periods. Two patients who underwent surgery in the early period and two patients who underwent surgery in the late period were accepted as negative laparotomy while 1 patient in the late operated group was regarded as non-therapeutic laparotomy. Diagnostic laparoscopy was performed in 81 cases. Complications developed in 7 patients who were operated in the early period and 10 patients who were operated in the late period. The mean hospital stay period was 5.3 days (1-33) in all cases, 4.5 days (2-20) in conservative treatment group and 8.4 days (3-33) in the operated patients;and the difference was statistically significant.Conclusions: Detailed physical examination, accurate assessment and effective use of different diagnostic methods reduce the frequency of negative and non-therapeutic laparotomies in abdominal stab wound injuries.展开更多
Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withs...Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withstand high temperatures. However, these properties make titanium alloys difficult to machine. Drilling of titanium alloy may generate high temperature and high cutting forces. This paper is aimed at determining the suitable cutting parameters in the drilling of titanium alloys to minimize the cutting temperature and cutting forces. A finite element 3D model of the drilling process is simulated in this research. A combination of drilling speeds and feed rates are simulated to obtain the resulting responses of cutting force and temperature. The central composite design (CCD) is used to generate different combinations of cutting parameters to reduce the number of experiments and optimize the temperature and cutting force responses. Results show at the drilling speed of 5000 rpm with a feed rate of 0.1 mm/rev, temperature and cutting force significantly reduced.展开更多
To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples w...To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples were selected from the target coal seams for proximate analyses,methane adsorption/desorption tests,and desorption indexes of drilling cuttings tests.The results indicated that the desorption volume in the initial stage of desorption is large,and increases slowly in the later stage.The methane desorption volume of PMD1 and PMD2 coal samples accounts for 15.14%-18.09%and 15.72%-18.17%respectively in the first 1 min,and 43.92%-48.55%and 41.87%-52.25%respectively in the first 10 min in the 120 min desorption tests.Both K_(1) andΔh_(2) present power function relationships with methane pressure.Similarly,the power function relationships also can be found between the initial desorption characteristics(Q1 and Q4-5)and the methane pressure.Finally,the average relative error between the measured value and the calculated value of Q1 based on K_(1) is less than that of Q4-5 based onΔh_(2),which indicates that K_(1) is a more reliable index thanΔh_(2) to predict the risk of coal and gas outburst in the No.16 coal seam of Pingmei No.12 coal mine.展开更多
Foam is used widely in underbalanced drilling for oil and gas exploration to improve well perfor-mance.Accurate prediction of the cutting transport and pressure loss in the foam drilling is an important way to prevent...Foam is used widely in underbalanced drilling for oil and gas exploration to improve well perfor-mance.Accurate prediction of the cutting transport and pressure loss in the foam drilling is an important way to prevent stuck pipe,lost circulation and to increase the rate of penetration(ROP).In foam drilling,the cuttings transport quality may be defined in terms of cuttings consistency and downhole pressure loss,which are controlled by many factors.Therefore,it is very difficult to establish the mathematical equation that reflects nonlinear relationship among various factors.The field and experimental measurements of these parameters are time consuming and costly.In this study,the authors suggest a cuttings transport mathematical modeling using BPN(back propagation network),RBFN(radial basis function network)and GRNN(general regression neural network)based on various experiment data of cuttings transport of previous researchers and compared the result with experiment data.Results of this study show that the GRNN has a correlation coefficient of 0.99962 and an average error of 0.15 in training datasets,and a correlation coefficient of 0.99881 and an average error of 0.612 in testing datasets,which has higher accuracy and faster training velocity than the BP network or RBFN network.GRNN can be used in many mathematical problems for accurate estimation of cuttings consistency and downhole pressure loss instead of field and experimental measurements for hydraulic design in foam drilling operation.展开更多
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage...When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.展开更多
Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping...Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.展开更多
Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. ...Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.展开更多
Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes a...Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes and for monitoring of pollution from human being. Cable-suspended core auger drills use an armored cable with a winch to provide power to the down-hole motor system and to retrieve the down-hole unit. Because of their lightweight, convenient transportation and installation, high penetration rates and low power consumption, core auger drills are widely used for shallow drilling in ice. Nowadays at least 14 types of auger electromechani- cal drills were designed and tested in different foreign and national glaciological laboratories. However, auger options were usually determined by experience, and the main parameters ( helix angle of the fights and rotational speed) are varied in a wide range from drill to drill. If parameters of auger are not chosen properly, poorly en- gineered drills had troubles with low efficiency of cuttings transportation, jam of ice cuttings, repeated fragmen- tation, cutters icing and stop penetration, abnormal power consumption, high rotation torques, and so on. Thus, this paper presents the method of optimization of iee cuttings transportation of cable-suspended core auger drill on the base of the theory of rotary auger. As the result, the optimal helix angle was determined correspond- ing to the rotational speed from the transportation efficiency point of view.展开更多
基金the financial support from the Natural Science Foundation of China(Grant Nos.52222401,52234002,52394250,52394255)Science Foundation of China University of Petroleum,Beijing(Grant No.ZXZX20230083)other projects(ZLZX2020-01-07-01)。
文摘In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.
基金This research was funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX21_2815).
文摘In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.
文摘The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.
基金supported by Project 863 (No. 2006AA09Z316)NSFC (No. 50704028 and 40974071)
文摘One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.
基金funded by Atlantic Canada Opportunity Agency (AIF contract number: 7812636-1920044)
文摘This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.
基金Project(50574061) supported by the National Natural Science Foundation of ChinaProject(IRT0411) supported by the Changjiang Scholars and Innovative Research Team,Ministry of Education
文摘The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
基金financially supported by the National Natural Science Foundation of China(Grant no.51674087,51974090)the National Science and Technology Major Project of the Ministry of Science and Technology of China(grant number 2017ZX05009003)。
文摘In oil and gas well drilling operations,it is of great significance to accurately predict the drag coefficient and settling velocity of drill cuttings in non-Newtonian drilling fluids.In this paper,the free-falling of 172 groups of spheres and 522 groups of irregular-shaped sand particles in Newtonian/non-Newtonian fluids were investigated experimentally.It was found that the drag coefficient calculated based on Newtonian correlations can result in a significant error when the particle settles in the non-Newtonian fluid.Therefore,predictive models of drag coefficient were established respectively for different types of fluids.The validity of the proposed drag coefficient model of spheres was verified by comparing it with the previous works.On this basis,the drag coefficient model of irregular-shaped sand particles was established by introducing a shape factor.The models do not use the shape factor that requires detailed threedimensional shape and size information.Instead,two-dimensional geometric information(circularity)is obtained via image analysis techniques.The present new models predict the settling velocity of sand particles in the power-law fluid and Herschel-Bulkley fluid accurately with a mean relative error of5.03%and 6.74%,respectively,which verifies the accuracy of the model.
基金Supported by the Basic Research Funds Reserved to State-run Universities(18CX02171A,18CX02033A)
文摘Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.
文摘With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52004298)。
文摘Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s development but also poses a severe environmental threat. Deep underground re-injection is a cost-effective and efficient method for dealing with hazardous cuttings. Numerous experiments and numerical studies on cuttings re-injection have been conducted in the past thirty years. However, there is still a divergence of views on the fracture development in the process of cuttings re-injection. A comprehensive review of existing studies is necessary to help researchers advance this technology. This paper provides a review of the fundamental studies on fracture behaviors during the deep underground re-injection of drilling cuttings. The limitations of the existing studies are also discussed to inspire new research endeavors.
基金supported by the National Natural Science Foundation (No. 50704028, 50904053)the Project 863 (No.2006AA09Z316)+1 种基金the Fundamental Research Funds for the Central Universities (No. CUGL100410)supported by the Opening Project of National Laboratory on Scientific Drilling, China University of Geosciences at Beijing (No. NLSD200901)
文摘As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.
文摘Objective: To prevent unnecessary laparotomies by evaluating the effectiveness of conservative approach in abdominal trauma cases due to drilling-cutting instruments.Methods: Demographic data, effected region of the body, additional findings of trauma, hemodynamic parameters, duration of admission, diagnostic methods and treatment modalities were retrospectively evaluated in 217 cases with abdominal injury (lower thoracic region, abdominal wall and back) among 1128 victims with drilling-cutting instrument injuries between January 1, 2012 and December 31, 2017. The conservative approach was based on physical examination, hemogram follow-up and hemodynamic evaluation.Results: Totally 177 (81.6%) cases of 217 patients were followed conservatively while 25 cases were operated at early (1-8 hours) and 15 were operated at late (9-48 hours) periods. Two patients who underwent surgery in the early period and two patients who underwent surgery in the late period were accepted as negative laparotomy while 1 patient in the late operated group was regarded as non-therapeutic laparotomy. Diagnostic laparoscopy was performed in 81 cases. Complications developed in 7 patients who were operated in the early period and 10 patients who were operated in the late period. The mean hospital stay period was 5.3 days (1-33) in all cases, 4.5 days (2-20) in conservative treatment group and 8.4 days (3-33) in the operated patients;and the difference was statistically significant.Conclusions: Detailed physical examination, accurate assessment and effective use of different diagnostic methods reduce the frequency of negative and non-therapeutic laparotomies in abdominal stab wound injuries.
文摘Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withstand high temperatures. However, these properties make titanium alloys difficult to machine. Drilling of titanium alloy may generate high temperature and high cutting forces. This paper is aimed at determining the suitable cutting parameters in the drilling of titanium alloys to minimize the cutting temperature and cutting forces. A finite element 3D model of the drilling process is simulated in this research. A combination of drilling speeds and feed rates are simulated to obtain the resulting responses of cutting force and temperature. The central composite design (CCD) is used to generate different combinations of cutting parameters to reduce the number of experiments and optimize the temperature and cutting force responses. Results show at the drilling speed of 5000 rpm with a feed rate of 0.1 mm/rev, temperature and cutting force significantly reduced.
基金the financial support from the National Natural Science Foundation of China(No.51874294,52034008).
文摘To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples were selected from the target coal seams for proximate analyses,methane adsorption/desorption tests,and desorption indexes of drilling cuttings tests.The results indicated that the desorption volume in the initial stage of desorption is large,and increases slowly in the later stage.The methane desorption volume of PMD1 and PMD2 coal samples accounts for 15.14%-18.09%and 15.72%-18.17%respectively in the first 1 min,and 43.92%-48.55%and 41.87%-52.25%respectively in the first 10 min in the 120 min desorption tests.Both K_(1) andΔh_(2) present power function relationships with methane pressure.Similarly,the power function relationships also can be found between the initial desorption characteristics(Q1 and Q4-5)and the methane pressure.Finally,the average relative error between the measured value and the calculated value of Q1 based on K_(1) is less than that of Q4-5 based onΔh_(2),which indicates that K_(1) is a more reliable index thanΔh_(2) to predict the risk of coal and gas outburst in the No.16 coal seam of Pingmei No.12 coal mine.
文摘Foam is used widely in underbalanced drilling for oil and gas exploration to improve well perfor-mance.Accurate prediction of the cutting transport and pressure loss in the foam drilling is an important way to prevent stuck pipe,lost circulation and to increase the rate of penetration(ROP).In foam drilling,the cuttings transport quality may be defined in terms of cuttings consistency and downhole pressure loss,which are controlled by many factors.Therefore,it is very difficult to establish the mathematical equation that reflects nonlinear relationship among various factors.The field and experimental measurements of these parameters are time consuming and costly.In this study,the authors suggest a cuttings transport mathematical modeling using BPN(back propagation network),RBFN(radial basis function network)and GRNN(general regression neural network)based on various experiment data of cuttings transport of previous researchers and compared the result with experiment data.Results of this study show that the GRNN has a correlation coefficient of 0.99962 and an average error of 0.15 in training datasets,and a correlation coefficient of 0.99881 and an average error of 0.612 in testing datasets,which has higher accuracy and faster training velocity than the BP network or RBFN network.GRNN can be used in many mathematical problems for accurate estimation of cuttings consistency and downhole pressure loss instead of field and experimental measurements for hydraulic design in foam drilling operation.
文摘When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.
基金funded by the Study on Comprehensive Control of Rocky Desertification and Ecological Service Function Improvement in Karst Peaks(No.2016YFC0502402)Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(Grant No.2016ZX05060)+2 种基金financially supported by the National Natural Science Foundation of China(No.51709254)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020335)Key Research and Development Program of Hubei Province,China(No.2020BCA073)。
文摘Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2011CB201204)the National Youth Science Foundation Program (No.50904068)+1 种基金the Heilongjiang Science & Technology Scientific Research Foundation Program for the Eighth Introduction of Talent (No.06-26)the National Engineering Research Center for Coal Gas Control
文摘Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.
基金Supported by Project of the National Science Foundation of China(No.41327804)
文摘Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes and for monitoring of pollution from human being. Cable-suspended core auger drills use an armored cable with a winch to provide power to the down-hole motor system and to retrieve the down-hole unit. Because of their lightweight, convenient transportation and installation, high penetration rates and low power consumption, core auger drills are widely used for shallow drilling in ice. Nowadays at least 14 types of auger electromechani- cal drills were designed and tested in different foreign and national glaciological laboratories. However, auger options were usually determined by experience, and the main parameters ( helix angle of the fights and rotational speed) are varied in a wide range from drill to drill. If parameters of auger are not chosen properly, poorly en- gineered drills had troubles with low efficiency of cuttings transportation, jam of ice cuttings, repeated fragmen- tation, cutters icing and stop penetration, abnormal power consumption, high rotation torques, and so on. Thus, this paper presents the method of optimization of iee cuttings transportation of cable-suspended core auger drill on the base of the theory of rotary auger. As the result, the optimal helix angle was determined correspond- ing to the rotational speed from the transportation efficiency point of view.