The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati...The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.展开更多
To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstr...To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstructure evolutions were systematically studied by heating microscope, X-ray diffraction, scanning electronic microscope and thermal analysis. Properties(physical properties, electrical properties and coefficient of thermal expansion(CTE)) were tested for comprehensive performance evaluation. The results showed that the utilization of poor quality kaolin broadened the firing range of cordierite ceramic which was from 1 200 to 1 380 ℃. Microstructure becomes loose with increasing of the pore size, which had significant influence on bending strength and electrical properties. High content of K2 O in poor quality kaolin was the reason for liquid phase generation in sintering process, which further leads to microstructural changes. The cordierite ceramic sintered at 1 320 ℃ had the properties as follows: CTE of 1.98×10^(-6) ℃^(-1)(500 ℃), bending strength of 90 MPa, apparent porosity of 15.1%, dielectric constant of 7.5(100 Hz), and volume resistivity of 1.05×109 Ω·cm(100 Hz). The comprehensive properties are very suitable for use as electric heater supports.展开更多
Electrical water heaters(EWHs)are important can-didates to provide demand-response services.The traditional optimization method for EWHs focuses on the optimization of the electricity consumption,without considering t...Electrical water heaters(EWHs)are important can-didates to provide demand-response services.The traditional optimization method for EWHs focuses on the optimization of the electricity consumption,without considering the shifting potential of the wateruse activities.This paper proposes an optimization method for EWHs considering the shifting potentials of both the electricity consumption and wateruse activities.Con-sidering that the wateruse activities could be monolithically shifted,the shifting model of the water-use activities was developed.In addition to the thermodynamic model of the EWH,the optimal scheduling model of the EWH was developed and solved using mixed-integer linear programming.Case studies were performed on a single EWH and aggregate EWHs,demon-strating that the proposed method can shift the water-use activities and therefore increase the load-shifting potential of the EWHs.展开更多
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB1600200in part by the Shaanxi Province Postdoctoral Research Project under grant 2023BSHEDZZ223+3 种基金in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102383101in part by the Shaanxi Province Qinchuangyuan High-Level Innovation and Entrepreneurship Talent Project under grant QCYRCXM-2023-112the Key Research and Development Program of Shaanxi Province under grant 2024GX-YBXM-442in part by the National Natural Science Foundation of China under grand 62373224.
文摘The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstructure evolutions were systematically studied by heating microscope, X-ray diffraction, scanning electronic microscope and thermal analysis. Properties(physical properties, electrical properties and coefficient of thermal expansion(CTE)) were tested for comprehensive performance evaluation. The results showed that the utilization of poor quality kaolin broadened the firing range of cordierite ceramic which was from 1 200 to 1 380 ℃. Microstructure becomes loose with increasing of the pore size, which had significant influence on bending strength and electrical properties. High content of K2 O in poor quality kaolin was the reason for liquid phase generation in sintering process, which further leads to microstructural changes. The cordierite ceramic sintered at 1 320 ℃ had the properties as follows: CTE of 1.98×10^(-6) ℃^(-1)(500 ℃), bending strength of 90 MPa, apparent porosity of 15.1%, dielectric constant of 7.5(100 Hz), and volume resistivity of 1.05×109 Ω·cm(100 Hz). The comprehensive properties are very suitable for use as electric heater supports.
基金supported in part by the National Natural Science Foundation of China(No.51707099).
文摘Electrical water heaters(EWHs)are important can-didates to provide demand-response services.The traditional optimization method for EWHs focuses on the optimization of the electricity consumption,without considering the shifting potential of the wateruse activities.This paper proposes an optimization method for EWHs considering the shifting potentials of both the electricity consumption and wateruse activities.Con-sidering that the wateruse activities could be monolithically shifted,the shifting model of the water-use activities was developed.In addition to the thermodynamic model of the EWH,the optimal scheduling model of the EWH was developed and solved using mixed-integer linear programming.Case studies were performed on a single EWH and aggregate EWHs,demon-strating that the proposed method can shift the water-use activities and therefore increase the load-shifting potential of the EWHs.
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.