The paper provides a general overview of chemical processes leading to the degradation of oil-paper insulation in oil-immersed electrical current transformers. Previous knowledge available in literature is complemente...The paper provides a general overview of chemical processes leading to the degradation of oil-paper insulation in oil-immersed electrical current transformers. Previous knowledge available in literature is complemented by new results placing a specific emphasis on the physicochemical factors which affect the copper release in the insulation oil and the oil oxidation kinetics. It is demonstrated that various ageing processes interact with each other, with one or another process dominating under specific conditions. Comprehensive but disjoint studies focusing on separate sub-processes may produce rather misleading results, and occasionally, lie behind rather irrelevant quality demands imposed on the insulating liquids.展开更多
Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture conce...Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures, which is recognized as the low frequency dispersion (LFD). In order to explain this dispersion, a new mechanism of dielectric response of LFD of oil-paper insula- tion is proposed. A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved, which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecu- lar chains to ions. A stochastic statistical model of the carrier mobility induced LFD is also developed. Moreover, actual tests under 50 °C and 2% moisture content were put forward, as well as simulations with according current waveforms. The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion of dielectric response for oil-paper insulation diagnosis.展开更多
The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments wi...The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.展开更多
Identification of the aging condition and the failure probability of oil-paper insulation in transformer is important for improving the reliability of electric power transmission system and applying life cycle cost (L...Identification of the aging condition and the failure probability of oil-paper insulation in transformer is important for improving the reliability of electric power transmission system and applying life cycle cost (LCC) management to electrical equipment. Based on data obtained in a series of multi-accelerated-aging experiments, two approaches for calculating failure probability of oil-paper insulation were compared in aspects of degree of polymerization (DP) and condition ranking. In the experiments, mineral oil and cellulose paper are sub- jected to electrical and thermal stresses, and several parameters, including dissolved gases’ volume fraction, furfural content, moisture content, and degree of polymerization, are measured after the aging process. Results show that weight of carbon oxide, which has a close relationship with cellulose paper degradation, is much higher in DP model than in condition ranking model. Moreover, it is concluded that DP model is more practically accurate than condition ranking model, because aging of cellulose paper rather than mineral oil is the key and critical factor of oil-paper insulation aging.展开更多
Oil-paper compound insulation has been widely used in power transformers for quite a long time because of its good performances. The insulation gradually degrades under combined thermal, electrical and chemical stress...Oil-paper compound insulation has been widely used in power transformers for quite a long time because of its good performances. The insulation gradually degrades under combined thermal, electrical and chemical stresses during routine operations, mainly because of space charges inside. This work investigated the space charge characteristics in oil-paper insulation under oil aging circumstance. New trans- former oil samples are thermally aged to obtain different aging states, and their physical and chemical properties are analyzed. New Kraft papers are dried in vacuum and fully immersed in these different aged oil samples, and three kinds of oil-paper samples are obtained. We use the pulsed electro-acoustic (PEA) method to measure space charge under both DC voltage-on and voltage-off conditions at room temperature. The effect of oil aging state on characteristics of space charge injection, accumulation, and decay is analyzed and discussed. The results show that comparing with the DC voltage-off condition, more charges are injected into samples at the interface of electrode and dielectric when DC voltage is on. When the oil-aged state gets worse, more charges are induced at both cathode and anode, more space charges are accumulated in the bulk, the area of negative charges is larger, and local electric field is distorted more seriously. Moreover, for the voltage-off condition, aged oil is good for space charge decay, and trapped positive space charges decay faster than trapped negative charges.展开更多
This paper deals with experimental investigations of the electrical and physical properties of oil impregnated insulation paper for power transformers at different temperatures. The ac breakdown voltage, tensile stren...This paper deals with experimental investigations of the electrical and physical properties of oil impregnated insulation paper for power transformers at different temperatures. The ac breakdown voltage, tensile strength and water content of insulation papers impregnated in mineral oil for different time periods were investigated. The effect of insulation paper thickness on the electrical and mechanical properties has also been studied. The results showed that the breakdown voltage and the tensile strength decreased with increasing the time of immersion of insulation paper in oil at room temperature, at 5℃ and at -12℃. Also, the thermal aging effect on the characteristic of insulation paper has been studied. It was found that high temperatures affect the breakdown voltage and the tensile strength to a great extent.展开更多
Natural ester is a kind of fire-resistant and environmentally friendly dielectric liquid, which has already been widely used in power transformers. The influence of moisture content on the degradation of natural ester...Natural ester is a kind of fire-resistant and environmentally friendly dielectric liquid, which has already been widely used in power transformers. The influence of moisture content on the degradation of natural ester (camellia oil and FR3 oil) impregnated paper in- sulation was investigated and compared with that of mineral oil impregnated paper in this paper. The initial moisture contents of insulating paper samples were 0.3%, 2% and 4%, respectively. Thermal aging experiment was conducted at 130 °C in hermetical stainless vessels for 80 days. Aging parameters such as the degree of polymerization (DP) of insulating paper, furfural mass concentration in oil and acid number of oil were measured. Chain scissions number (CSN) of aged insulating paper was calculated. The results show that moisture could accele- rate the degradation of both natural ester impregnated paper insulation and mineral oil impregnated paper insulation, while the degradation rate of natural ester impregnated paper insulation is much lower than that of mineral oil impregnated paper insulation. High moisture satura- tion solubility and hydrolysis process of natural ester may be the reason.展开更多
The chaotic characteristics of time series of five partial discharge (PD) patterns in oil-paper insulation are studied. The results verify obvious chaotic characteristic of the time series of discharge signals and t...The chaotic characteristics of time series of five partial discharge (PD) patterns in oil-paper insulation are studied. The results verify obvious chaotic characteristic of the time series of discharge signals and the fact that PD is a chaotic process. These time series have distinctive features, and the chaotic attractors obtained from time series differed greatly from each other by shapes in the phase space, so they could be used to qualitatively identify the PD patterns. The phase space parameters are selected, then the chaotic characteristic quantities can be extracted. These quantities could quantificationally characterize the PD patterns. The effects on pattern recognition of PRPD and CAPD are compared by using the neural network of radial basis function. The results show that both of the two recognition methods work well and have their respective advantages. Then, both the statistical operators under PRPD mode and the chaotic characteristic quantities under CAPD mode are selected comprehensively as the input vectors of neural network, and the PD pattern recognition accuracy is thereby greatly improved.展开更多
In order to study the linkage effects between degree of polymerization and frequency domain dielectric spectroscopy characteristics of oil-paper insulation, the frequency domain dielectric response test platform of oi...In order to study the linkage effects between degree of polymerization and frequency domain dielectric spectroscopy characteristics of oil-paper insulation, the frequency domain dielectric response test platform of oil-paper insulation is set up. Complex permittivity of oil-paper insulation respectively composed by new or aged oil and insulation paper with different DP are tested, and complex permittivity of oil-paper insulation respectively composed by insulation respectively composed by new oil and insulation paper with different DP and low or high moisture content are tested. The test results are analyzed, and the analysis results show that the degree of polymerization of insulation paper has an influence on complex permittivity of oil-paper insulation though influencing the distribution of moisture and acids between oil and paper.展开更多
The insulating paper of the transformer is affected by many factors during the operation,meanwhile,the surface texture of the paper is easy to change.To explore the relationship between the aging state and surface tex...The insulating paper of the transformer is affected by many factors during the operation,meanwhile,the surface texture of the paper is easy to change.To explore the relationship between the aging state and surface texture change of insulating paper,firstly,the thermal aging experiment of insulating paper is carried out,and the insulating paper samples with different aging times are obtained.After then,the images of the aged insulating paper samples are collected and pre-processed.The pre-processing effect is verified by constructing and calculating the gray surface of the sample.Secondly,the texture features of the insulating paper image are extracted by box dimension and multifractal spectrum.Based on that,the extreme learning machine(ELM)is taken as the classification tool with texture features and aging time as the input and output,to train the algorithm and construct the corresponding relationship between the texture feature and the aging time.After then,the insulating paper with unknown aging time is predicted with a trained ELMalgorithm.The numerical test results show that the texture features extracted from the fractal dimension of the micro image can effectively characterize the aging state of insulating paper,the average accuracy can reach 91.6%.It proves that the fractal dimension theory can be utilized for assessing the aging state of insulating paper for onsite applications.展开更多
The purpose of this work is to determine the impact of thermal aging on the dielectric and physicochemical properties of the oil/paper mixed insulation. We performed a comparative analysis of dielectric paper dipped i...The purpose of this work is to determine the impact of thermal aging on the dielectric and physicochemical properties of the oil/paper mixed insulation. We performed a comparative analysis of dielectric paper dipped in two cooling fluids: palm kernel oil methyl ester (MEPKO) and mineral oil (MO). Two types of dielectric paper were used: Thermally Upgraded Kraft paper (TUK) and Nomex-910 paper (NP-910). An accelerated aging test was realized at 110<span style="white-space:nowrap;">°</span>C during a total of 96 hours. Samples of oil and paper were collected after 0, 48, 72 and 96 hours for analyses purposes. The analyses performed included the measurement of the Breakdown voltage (BDV) of the dielectric papers, the Total Acid Number (TAN) and the Decay Dissolved Products (DDP) of the liquid dielectrics. The BDV of NP-910 is greater than the BDV of TUK. Concerning the type of oil, the BDV of dielectric papers impregnated with MEPKO is greater than the BDV of similar papers impregnated with MO, indicating a better preservation of paper when dipped in methyl esters. The analyses of TAN and DDP revealed that Nomex-910 improves the oxidation stability of MO, but reduces the oxidation stability of MEPKO. These results prove that methyl esters can be used as a substitute to replace mineral oils in power transformers. Furthermore, they show that NP can be used mainly in areas of transformer where solid insulation is subjected to high thermal and electrical stress, and TUK other places where solid insulation is required. Such combination could assure money savings and a better preservation of the oil viscosity.展开更多
针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测...针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测方法:采用具有随机效应的维纳过程建立油纸绝缘的两性能指标相关退化模型,基于赤池信息准则(Akaike Information Criterion, AIC)选择拟合效果更优的Copula函数来描述两性能指标间的相关关系,采用最大似然估计法估计初始时刻的模型参数,基于序列贝叶斯更新方法在线更新退化模型中的漂移系数,以实现油纸绝缘剩余寿命的在线预测。最后以加速热老化试验下油纸绝缘的聚合度和抗拉强度的退化数据进行实例验证。结果表明,两性能指标相关退化模型比单性能指标退化模型的剩余寿命预测值与实际值之间的平均绝对误差更小,预测的准确性更高,且随着模型参数不断更新,剩余寿命的预测值与实际值间的绝对误差在不断减小,预测结果的准确性在不断提升。展开更多
文摘The paper provides a general overview of chemical processes leading to the degradation of oil-paper insulation in oil-immersed electrical current transformers. Previous knowledge available in literature is complemented by new results placing a specific emphasis on the physicochemical factors which affect the copper release in the insulation oil and the oil oxidation kinetics. It is demonstrated that various ageing processes interact with each other, with one or another process dominating under specific conditions. Comprehensive but disjoint studies focusing on separate sub-processes may produce rather misleading results, and occasionally, lie behind rather irrelevant quality demands imposed on the insulating liquids.
基金Project supported by National Nature Science Foundation of China (51107105), Sichuan Science Fund for Young Scholars (2011JQ0009).
文摘Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures, which is recognized as the low frequency dispersion (LFD). In order to explain this dispersion, a new mechanism of dielectric response of LFD of oil-paper insula- tion is proposed. A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved, which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecu- lar chains to ions. A stochastic statistical model of the carrier mobility induced LFD is also developed. Moreover, actual tests under 50 °C and 2% moisture content were put forward, as well as simulations with according current waveforms. The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion of dielectric response for oil-paper insulation diagnosis.
基金supported by National High-tech Research and Development Program of China(863 Program)(2009AA04Z416) National Science Foundation of China(51021005) Scientific Innovation of Colleges and Universities(Project v-200704)
基金Project supported by National Basic Research Program of China(973 Program) (2011CB 209400)Program of State Key Laboratory of Power Systems for ±1 100 kV UHVDC Technology(SKLD10M09)
文摘The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.
基金supported by National High-tech Research and Development Program of China(863 Program)(2009AA04Z416) National Science Foundation of China(51021005) Scientific Innovation of Colleges and Universities(200704)
基金Project supported by National Basic Research Program of China (973 Program) (2011CB 209404)
文摘Identification of the aging condition and the failure probability of oil-paper insulation in transformer is important for improving the reliability of electric power transmission system and applying life cycle cost (LCC) management to electrical equipment. Based on data obtained in a series of multi-accelerated-aging experiments, two approaches for calculating failure probability of oil-paper insulation were compared in aspects of degree of polymerization (DP) and condition ranking. In the experiments, mineral oil and cellulose paper are sub- jected to electrical and thermal stresses, and several parameters, including dissolved gases’ volume fraction, furfural content, moisture content, and degree of polymerization, are measured after the aging process. Results show that weight of carbon oxide, which has a close relationship with cellulose paper degradation, is much higher in DP model than in condition ranking model. Moreover, it is concluded that DP model is more practically accurate than condition ranking model, because aging of cellulose paper rather than mineral oil is the key and critical factor of oil-paper insulation aging.
基金Project supported by China National Fund for Distinguished Young Scientists (51125029)National High-tech Research and Development Program of China (863 Program) (2007AA04Z411)
文摘Oil-paper compound insulation has been widely used in power transformers for quite a long time because of its good performances. The insulation gradually degrades under combined thermal, electrical and chemical stresses during routine operations, mainly because of space charges inside. This work investigated the space charge characteristics in oil-paper insulation under oil aging circumstance. New trans- former oil samples are thermally aged to obtain different aging states, and their physical and chemical properties are analyzed. New Kraft papers are dried in vacuum and fully immersed in these different aged oil samples, and three kinds of oil-paper samples are obtained. We use the pulsed electro-acoustic (PEA) method to measure space charge under both DC voltage-on and voltage-off conditions at room temperature. The effect of oil aging state on characteristics of space charge injection, accumulation, and decay is analyzed and discussed. The results show that comparing with the DC voltage-off condition, more charges are injected into samples at the interface of electrode and dielectric when DC voltage is on. When the oil-aged state gets worse, more charges are induced at both cathode and anode, more space charges are accumulated in the bulk, the area of negative charges is larger, and local electric field is distorted more seriously. Moreover, for the voltage-off condition, aged oil is good for space charge decay, and trapped positive space charges decay faster than trapped negative charges.
文摘This paper deals with experimental investigations of the electrical and physical properties of oil impregnated insulation paper for power transformers at different temperatures. The ac breakdown voltage, tensile strength and water content of insulation papers impregnated in mineral oil for different time periods were investigated. The effect of insulation paper thickness on the electrical and mechanical properties has also been studied. The results showed that the breakdown voltage and the tensile strength decreased with increasing the time of immersion of insulation paper in oil at room temperature, at 5℃ and at -12℃. Also, the thermal aging effect on the characteristic of insulation paper has been studied. It was found that high temperatures affect the breakdown voltage and the tensile strength to a great extent.
基金Project supported by National Natural Science Foundation of China (51021005), Specia- lized Research Fund fort.he Doctoral Program of Higher Education (201101911 10017).
文摘Natural ester is a kind of fire-resistant and environmentally friendly dielectric liquid, which has already been widely used in power transformers. The influence of moisture content on the degradation of natural ester (camellia oil and FR3 oil) impregnated paper in- sulation was investigated and compared with that of mineral oil impregnated paper in this paper. The initial moisture contents of insulating paper samples were 0.3%, 2% and 4%, respectively. Thermal aging experiment was conducted at 130 °C in hermetical stainless vessels for 80 days. Aging parameters such as the degree of polymerization (DP) of insulating paper, furfural mass concentration in oil and acid number of oil were measured. Chain scissions number (CSN) of aged insulating paper was calculated. The results show that moisture could accele- rate the degradation of both natural ester impregnated paper insulation and mineral oil impregnated paper insulation, while the degradation rate of natural ester impregnated paper insulation is much lower than that of mineral oil impregnated paper insulation. High moisture satura- tion solubility and hydrolysis process of natural ester may be the reason.
基金supported by National Natural Science Foundation of China(No.50877064)
文摘The chaotic characteristics of time series of five partial discharge (PD) patterns in oil-paper insulation are studied. The results verify obvious chaotic characteristic of the time series of discharge signals and the fact that PD is a chaotic process. These time series have distinctive features, and the chaotic attractors obtained from time series differed greatly from each other by shapes in the phase space, so they could be used to qualitatively identify the PD patterns. The phase space parameters are selected, then the chaotic characteristic quantities can be extracted. These quantities could quantificationally characterize the PD patterns. The effects on pattern recognition of PRPD and CAPD are compared by using the neural network of radial basis function. The results show that both of the two recognition methods work well and have their respective advantages. Then, both the statistical operators under PRPD mode and the chaotic characteristic quantities under CAPD mode are selected comprehensively as the input vectors of neural network, and the PD pattern recognition accuracy is thereby greatly improved.
文摘In order to study the linkage effects between degree of polymerization and frequency domain dielectric spectroscopy characteristics of oil-paper insulation, the frequency domain dielectric response test platform of oil-paper insulation is set up. Complex permittivity of oil-paper insulation respectively composed by new or aged oil and insulation paper with different DP are tested, and complex permittivity of oil-paper insulation respectively composed by insulation respectively composed by new oil and insulation paper with different DP and low or high moisture content are tested. The test results are analyzed, and the analysis results show that the degree of polymerization of insulation paper has an influence on complex permittivity of oil-paper insulation though influencing the distribution of moisture and acids between oil and paper.
基金This work was supported by the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University,the Youth Science Foundation of Lanzhou Jiaotong University(No.2019029)the University Innovation Fund Project of Gansu Provincial Department of Education(No.2020A-036)the Young Doctor Foundation of JYT.GANSU.GOV.CN(No.2021QB-060).
文摘The insulating paper of the transformer is affected by many factors during the operation,meanwhile,the surface texture of the paper is easy to change.To explore the relationship between the aging state and surface texture change of insulating paper,firstly,the thermal aging experiment of insulating paper is carried out,and the insulating paper samples with different aging times are obtained.After then,the images of the aged insulating paper samples are collected and pre-processed.The pre-processing effect is verified by constructing and calculating the gray surface of the sample.Secondly,the texture features of the insulating paper image are extracted by box dimension and multifractal spectrum.Based on that,the extreme learning machine(ELM)is taken as the classification tool with texture features and aging time as the input and output,to train the algorithm and construct the corresponding relationship between the texture feature and the aging time.After then,the insulating paper with unknown aging time is predicted with a trained ELMalgorithm.The numerical test results show that the texture features extracted from the fractal dimension of the micro image can effectively characterize the aging state of insulating paper,the average accuracy can reach 91.6%.It proves that the fractal dimension theory can be utilized for assessing the aging state of insulating paper for onsite applications.
文摘The purpose of this work is to determine the impact of thermal aging on the dielectric and physicochemical properties of the oil/paper mixed insulation. We performed a comparative analysis of dielectric paper dipped in two cooling fluids: palm kernel oil methyl ester (MEPKO) and mineral oil (MO). Two types of dielectric paper were used: Thermally Upgraded Kraft paper (TUK) and Nomex-910 paper (NP-910). An accelerated aging test was realized at 110<span style="white-space:nowrap;">°</span>C during a total of 96 hours. Samples of oil and paper were collected after 0, 48, 72 and 96 hours for analyses purposes. The analyses performed included the measurement of the Breakdown voltage (BDV) of the dielectric papers, the Total Acid Number (TAN) and the Decay Dissolved Products (DDP) of the liquid dielectrics. The BDV of NP-910 is greater than the BDV of TUK. Concerning the type of oil, the BDV of dielectric papers impregnated with MEPKO is greater than the BDV of similar papers impregnated with MO, indicating a better preservation of paper when dipped in methyl esters. The analyses of TAN and DDP revealed that Nomex-910 improves the oxidation stability of MO, but reduces the oxidation stability of MEPKO. These results prove that methyl esters can be used as a substitute to replace mineral oils in power transformers. Furthermore, they show that NP can be used mainly in areas of transformer where solid insulation is subjected to high thermal and electrical stress, and TUK other places where solid insulation is required. Such combination could assure money savings and a better preservation of the oil viscosity.
文摘针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测方法:采用具有随机效应的维纳过程建立油纸绝缘的两性能指标相关退化模型,基于赤池信息准则(Akaike Information Criterion, AIC)选择拟合效果更优的Copula函数来描述两性能指标间的相关关系,采用最大似然估计法估计初始时刻的模型参数,基于序列贝叶斯更新方法在线更新退化模型中的漂移系数,以实现油纸绝缘剩余寿命的在线预测。最后以加速热老化试验下油纸绝缘的聚合度和抗拉强度的退化数据进行实例验证。结果表明,两性能指标相关退化模型比单性能指标退化模型的剩余寿命预测值与实际值之间的平均绝对误差更小,预测的准确性更高,且随着模型参数不断更新,剩余寿命的预测值与实际值间的绝对误差在不断减小,预测结果的准确性在不断提升。