期刊文献+
共找到21,567篇文章
< 1 2 250 >
每页显示 20 50 100
Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH_(2)with ultra-high efficiency and stability for oil-in-water emulsions separation
1
作者 Xiaoxia Ye Rixin Huang +3 位作者 Zhihong Zheng Juan Liu Jie Chen Yuancai Lv 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期285-297,共13页
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si... Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation. 展开更多
关键词 Collagen fibers Metal-organic frameworks oil-in-water emulsion separation Size sieving
下载PDF
Demulsification Behavior, Characteristics, and Performance of Surfactant Stabilized Oil-in-Water Emulsion under Bidirectional Pulsed Electric Field
2
作者 Ren Boping Kang Yong +3 位作者 Zhang Xianming Gong Haifeng Chen Ling Liu Yunqi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期10-22,共13页
As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsifica... As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF. 展开更多
关键词 oil-in-water emulsion SURFACTANT DemulsIFICATION bidirectional pulsed electric field
下载PDF
Enhanced coalescence separation of oil-in-water emulsions using electrospun PVDF nanofibers 被引量:2
3
作者 Yujie Yang Lei Li +4 位作者 Qian Zhang Wenwen Chen Song Lin Zaiqian Wang Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期76-83,共8页
A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electr... A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electrospun nanofibers such as roughness and surface morphology greatly affected the oil droplet interception efficiency and surface wettability of the membrane.A series of coalescence units were prepared with different layers of nanofibrous membrane and the separation efficiencies at different initial concentrations,flow rates,and oil types were tested.It is very interesting that the obtained nanofibrous membrane exhibited superoleophilicity in air but poor oleophilicity under water,which was beneficial to the coalescence process.The coalescence unit with four membrane layers had excellent performances under different initial concentrations and flow rates.The separation efficiency of the 4-layers unit remained above 98.2%when the initial concentration reached up to 2000 mg·L-1.Furthermore,the unit also exhibited good performance with the increasing oil density and viscosity,which is promising for large-scale oil wastewater treatment. 展开更多
关键词 COALESCENCE ELECTROSPINNING Nanofibrous membrane oil-in-water emulsions
下载PDF
Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-water Emulsions —— Isolation of functional fractions from heavy crude oil and study of their properties 被引量:5
4
作者 范维玉 宋远明 +3 位作者 南国枝 赵福麟 肖建洪 李水平 《Petroleum Science》 SCIE CAS CSCD 2004年第3期66-71,共6页
The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional... The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained. 展开更多
关键词 Heavy crude oil components oil in water emulsion
下载PDF
Measurement of water holdup in oil-in-water emulsions in wellbores using microwave resonance sensor 被引量:1
5
作者 Jin-Ningde Liu-Dongyang +1 位作者 Bai-Landi Ren-Yingyu 《Applied Geophysics》 SCIE CSCD 2021年第2期185-197,273,共14页
In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software... In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz. 展开更多
关键词 oil-in-water emulsions water holdup measurement high water cut microwave resonance sensor
下载PDF
Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-water Emulsions—the film properties of heavy crude functional components and water system 被引量:1
6
作者 ChenYaowu FanWeiyu SongYuanming NanGuozhi LiShuiping ChenShukun 《Petroleum Science》 SCIE CAS CSCD 2005年第1期93-96,共4页
A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the... A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface. The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfacial activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion. 展开更多
关键词 viscous crude oil-in-water emulsion pressure-area isotherm
下载PDF
Influence of hydroxypropyl methylcellulose,methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions 被引量:2
7
作者 Miao Zhang Baixue Yang +1 位作者 Wei Liu Sanming Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2017年第6期521-531,共11页
Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can rep... Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can replace the irritant low molecular weight surfactants to formulate emulsions for the pharmaceutical field. This project focused on preparing O/W emulsions stabilized with polymers for pharmaceuticals such as polysaccharides, proteins and poloxamers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC),gelatin, poloxamer 407 (F127) and poloxamer 188 (F68). Emulsion physical stability was assessed by centrifugation, autoclaving sterilization and droplet size measurements. The stabilization mechanisms of emulsions were determined by interfacial tension and rheological measurements. Results stated that the efficacy of these polymers for pharmaceuticals stabilized emulsions was sorted in the order: F127 > F68 > HPMC > MC > Gelatin. 展开更多
关键词 POLYMERS for pharmaceuticals emulsions PHYSICAL STABILITY STABILIZATION mechanism
下载PDF
Modeling of flow of oil-in-water emulsions through porous media 被引量:2
8
作者 Ajay Mandal Achinta Bera 《Petroleum Science》 SCIE CAS CSCD 2015年第2期273-281,共9页
Formation and flow of emulsions in porous media are common in all enhanced oil recovery tech- niques. In most cases, oil-in-water (O/W) emulsions are formed in porous media due to oil-water interaction. Even now, de... Formation and flow of emulsions in porous media are common in all enhanced oil recovery tech- niques. In most cases, oil-in-water (O/W) emulsions are formed in porous media due to oil-water interaction. Even now, detailed flow mechanisms of emulsions through porous media are not well understood. In this study, variation of rate of flow of O/W emulsions with pressure drop was studied experimentally, and rheological pa- rameters were calculated. The pressure drop increases with an increase in oil concentration in the O/W emulsion due to high viscosity. The effective viscosity of the emulsion was calculated from the derived model and expressed as a function of shear rate while flowing through porous media. Flow of O/W emulsions of different concentrations was evaluated in sand packs of different sand sizes. Emulsions were characterized by analyzing their stability, rheological properties, and tem- perature effects on rheological properties. 展开更多
关键词 emulsion Porous media RheologyModeling - Pressure drop
下载PDF
Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-Water Emulsion——Ⅲ. Effects of pH on the interfacial properties of heavy crude functional fractions and water system 被引量:1
9
作者 FanWeiyu NanGuozhi LiShuiping SongYuanming 《Petroleum Science》 SCIE CAS CSCD 2005年第2期103-106,111,共5页
In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric frac... In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric fraction and asphaltene is great. The interfacial pressure of fractions increases in strongly basic conditions. The ζ (-80mv) of acid fraction is the largest under basic conditions (pH=11-12), with the result to show that the interfacial activity of the acid fraction is superior to that of other fractions. The results of model emulsions show that strongly basic conolition (pH≥11) is beneficial to oil-in- water emulsion stability. The interfacial activity of acid fraction and asphaltene is superior to that of other crude fractions. 展开更多
关键词 pH value stable factors of emulsion interfacial properties
下载PDF
Characterization of a Liquid Crystal Stabilized Pharmaceutical Oil-in-Water Emulsion Optimized for Skin Delivery 被引量:1
10
作者 Melinda J. Sutton David W. Osborne +2 位作者 Kevin Dahl Victoria Bax G. Alan Schick 《Journal of Cosmetics, Dermatological Sciences and Applications》 2018年第4期207-217,共11页
A moisturizing cream containing 25 wt% of an organic solvent, diethylene glycol monoethyl ether (DEGEE), is observed to be stabilized by an emulsifying wax blend of cetearyl alcohol, dicetyl phosphate, and ceteth-10 p... A moisturizing cream containing 25 wt% of an organic solvent, diethylene glycol monoethyl ether (DEGEE), is observed to be stabilized by an emulsifying wax blend of cetearyl alcohol, dicetyl phosphate, and ceteth-10 phosphate (tradename Crodafos CES). Polarized light microscopy indicates that the Crodafos CES helps to produce a liquid-crystal stabilized oil-in-water emulsion, which is physically stable for months under accelerated aging conditions and chemically stable over the full topical pH range of 3.5 to 9. Emulsion globule size in the cream is observed to be dependent on the degree of emulsifying wax neutralization, with the globule size decreasing with increasing cream pH. The superior solubilizing properties of DEGEE combined with the full pH range and liquid-crystal stabilizing properties of the Crodafos CES give this formulation the potential for a wide range of applications in the topical delivery of active pharmaceutical ingredients. 展开更多
关键词 PHARMACEUTICAL emulsion SKIN Delivery Liquid Crystal STABILIZED emulsion Polarized Light Microscopy TOPICAL Formulation
下载PDF
Impact of sesame lignan on physical and oxidative stability of flaxseed oil-in-water emulsion 被引量:1
11
作者 Xintian Wang Kun Yu +6 位作者 Chen Cheng Xiao Yu David Julian McClements Wenwen Huang Jia Yang Fenghong Huang Qianchun Deng 《Oil Crop Science》 2019年第4期254-266,共13页
Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impac... Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impacts of natural sesamol(SOH)and sesamin(SES)on stability of flaxseed oil-in-water emulsion were investigated.Results showed that SOH indicated higher antioxidant activity and significantly prolonged the time of emulsion oil-off by retarding oil droplet aggregation in a dose dependent manner throughout storage.Moreover,SOH showed substantial extended lag phase of lipid oxidation products,especially for secondary oxidation products(thiobarbituric acid-reactive substances,TBARS),with a maximum reduction of 70%with 800 M dosage.The antioxidative efficiency of SOH might relate to its strong ability of scavenging free radical and chelate transition metal.Furthermore,SOH significantly enhanced interfacial barrier property and reduced permeation rate of peroxyl radical across emulsion interface by hydrogen bonds between sugar groups of saponin molecules and SOH.However,no obvious change in barrier property of emulsion was observed in SES.SOH improved physicochemical property of flaxseed oil-in-water emulsion with higher antioxidant activity and stronger interfacial barrier property,so that it could be serve as plant-based antioxidant in oil-in-water emulsion delivery system. 展开更多
关键词 lipid oxidation SESAMOL SESAMIN quillaja SAPONIN oil-in-water emulsions
下载PDF
Modeling and Simulation of High Power Ultrasonic Process in Preparation of Stable Oil-in-Water Emulsion
12
作者 Javad Sargolzaei Mohamad Taghi Hamed Mosavian Attieh Hassani 《Journal of Software Engineering and Applications》 2011年第4期259-267,共9页
The aims of this research are to study application of high power ultrasound in preparation of stable oil-in-water emulsion. The effect of pH, ionic strength, pectin, Guar gum, lecithin, egg yolk, and xanthan gum as we... The aims of this research are to study application of high power ultrasound in preparation of stable oil-in-water emulsion. The effect of pH, ionic strength, pectin, Guar gum, lecithin, egg yolk, and xanthan gum as well as the time of sonication, temperature and viscosity of oil-water mixture on the specific surface area and size of droplets, and creaming index of the emulsion samples was investigated. The experimental data were analyzed with Taguchi method and optimum conditions were determined. In addition, an adaptive neuro-fuzzy inference system (ANFIS) was employed to modeling and categorizes the properties of the resulted emulsion. The results showed that increasing sonication time narrowed the range of droplets size distribution. Pectin and xanthan enhanced the stability of emulsion, although they had different impacts on the emulsion stability when used individually or together. Guar gum improved the viscosity of the continuous phase. Emulsions stabilized by egg yolk were found to be stable to droplet flocculation at pH 3 and at relatively low salt concentrations. 展开更多
关键词 Ultrasound Process Stable Oil EGG YOLK emulsion ANFIS FIS
下载PDF
Development of Fine Poly(D,L-Lactic-Co-Glycolic Acid) Particles for Hydrophilic Drug Using a Solid-in-Oil-in-Water Emulsion
13
作者 Eiichi Toorisaka Kikumi Watanabe Makoto Hirata 《Journal of Encapsulation and Adsorption Sciences》 2018年第2期58-66,共9页
Poly(D,L-Lactic-Co-Glycolic Acid) (PLGA) copolymers have been extensively used as controlled-release carriers for many hydrophilic drugs because they are non-toxic, biodegradable, bioavailable, and biocompatible. In g... Poly(D,L-Lactic-Co-Glycolic Acid) (PLGA) copolymers have been extensively used as controlled-release carriers for many hydrophilic drugs because they are non-toxic, biodegradable, bioavailable, and biocompatible. In general, PLGA particles have been produced by a solvent evaporation technique utilizing water-in-oil-in-water (W/O/W) emulsions. However, W/O/W emulsions are unstable, causing the outer and inner aqueous phases to easily fuse during particle preparation. Consequently, a sufficient amount of drug was not encapsulated inside the particles. In this study, we examined a new particle preparation method utilizing a solid-in-oil-in-water (S/O/W) emulsion technique. The advantages of S/O/W emulsions, wherein a surfactant-drug complex disperses into the oil phase, were as follows: 1) leakage of hydrophilic drugs from the emulsions was inhibited, and 2) facile control over the emulsion particle size. Thus, the PLGA particles prepared by this method showed high encapsulation efficiency of drugs and formation of fine particles of submicron size by membrane emulsification were achieved. 展开更多
关键词 PLGA HYDROPHILIC drugs S/O/W emulsions Solvent EVAPORATION
下载PDF
Desalted duck egg white nanogels as Pickering stabilizers for food-grade oil-in-water emulsion
14
作者 Jingyun Zhao Xiaohan Guo +5 位作者 Ze Chen Yalei Dai Hongshan Liang Qianchun Deng Shugang Li Bin Zhou 《Food Science and Human Wellness》 SCIE 2022年第5期1306-1314,共9页
Achieving the reuse of traditional egg by-products,salted duck egg whites(SEW),is an urgent problem to be solved.In this current work,we constructed a heat-induced gel-assisted desalination method for SEW.Subsequently... Achieving the reuse of traditional egg by-products,salted duck egg whites(SEW),is an urgent problem to be solved.In this current work,we constructed a heat-induced gel-assisted desalination method for SEW.Subsequently,a top-down way was utilized to prepare desalted duck egg protein nanogels(DEPN)with uniformly distributed diameters and their application in the oil/water(O/W)interface system was explored.The results revealed that the increase of DEPN concentration could lower the droplet size,however,the size was negatively correlated with the oil phase fraction.Moreover,the effect of pH,ionic strength,and temperature on the emulsion stability demonstrated that the DEPN-stabilized emulsion displayed superior physical stability under different conditions.The addition of NaCl resulted in the significant decrease in droplet size of the emulsion,while further increasing the NaCl concentration,the droplet size did not decrease accordingly.Besides,heat-treatment and cold-treatment had little negative effect on the stability of the emulsion.Even if the droplet size of the emulsion increased at 80℃for 3 h,the morphology of the emulsion remained unchanged.Our study demonstrated DEPN had great potential as a stabilizer for food-grade Pickering emulsions. 展开更多
关键词 Salted duck egg white DESALINATION Protein nanogels Pickering emulsion Stability
下载PDF
New methacrylic imidazolium poly (ionic liquid) gel with super swelling capacity for oil-in-water emulsions
15
作者 Xing Zhang Shuo-Jue Wang +3 位作者 Jing Peng Jiu-Qiang Li Ling Xu Mao-Lin Zhai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第3期1-10,共10页
A new polymeric ionic liquid gel was prepared with 1-[(2-methacryloyloxy)ethyl]-3-methylimidazolium bromide(MEMImBr) via radiation-induced polymerization and cross-linking at room temperature.The resultant PMEMImBr ge... A new polymeric ionic liquid gel was prepared with 1-[(2-methacryloyloxy)ethyl]-3-methylimidazolium bromide(MEMImBr) via radiation-induced polymerization and cross-linking at room temperature.The resultant PMEMImBr gel exhibits high strength and flexibility as well as special swelling behavior in oil-in-water(O/W)emulsions.The swelling behavior of PMEMImBr gel in emulsions is similar to that in water except that the swelling rate in emulsions is slightly smaller than that in water.The organic solvents with higher polarity in the emulsions contribute to the swelling of PMEMImBr gels,and the O/W proportion of emulsion in the swollen gel equals approximately that of original emulsion when the concentration of organic solvent is lower than 0.2 g/g. 展开更多
关键词 离子液体 甲基咪唑 乳液 凝胶 水油 溶胀行为 能力 膨胀
下载PDF
Bionic functional membranes for separation of oil-in-water emulsions
16
作者 Chaolang CHEN Ruisong JIANG Zhiguang GUO 《Friction》 SCIE EI CAS CSCD 2024年第9期1909-1928,共20页
The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human... The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human health.Membrane technology is considered an outstanding solution strategy for the separation of oil-in-water emulsions due to its unique advantages of low cost,high efficiency,easy operation,and environmental friendliness.However,the membrane is easily fouled by the emulsion oil droplets during the separation process,causing a sharp decline in permeation flux,which greatly inhibits the long-term use of the membrane and largely shortens the membrane’s life.Recently,it was found that endowing the membranes with special wettability e.g.,superhydrophilic and superoleophobic can greatly enhance the permeability of the continuous water phase and inhibit the adhesion of oil droplets,thus promoting the separation performance and anti-oil-fouling property of membrane for oily emulsions.In this paper,we review and discuss the recent developments in membranes with special wettability for separating oil-in-water emulsions,including the mechanism analysis of emulsion separation membrane,membrane fouling issues,design strategies,and representative studies for enhancing the membrane’s anti-oil-fouling ability and emulsion separation performance. 展开更多
关键词 bionic surface membranes WETTABILITY oil-in-water emulsions oil-water separation
原文传递
Gum Arabic that is Enzymatically Modified with Arabidopsis Beta-Glucuronosyltransferase Can Make Smaller and more Stable Oil-in-Water Emulsions
17
作者 Adiphol Dilokpimol Naomi Geshi 《材料科学与工程(中英文A版)》 2015年第1期69-77,共9页
关键词 阿拉伯树胶 葡萄糖醛酸 酶促改性 拟南芥 稳定 阿拉伯半乳聚糖 水乳液 油包水乳状液
下载PDF
Oil-in-water nanoemulsions loaded with lycopene extracts encapsulated by spray drying:Formulation,characterization and optimization
18
作者 Junyang Li Roberta Campardelli +2 位作者 Giuseppe Firpo Jingtao Zhang Patrizia Perego 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期73-81,共9页
Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulatio... Lycopene is very susceptible to degradation once released from the protective chromoplast environment.In this study,oil-in-water(O/W)nanoemulsions coupled with spray drying technology were applied for the encapsulation and stabilization of lycopene extracted from tomato waste.Tomato extract was obtained by ultrasound-assisted extraction.Nanoemulsions were prepared by a high-speed rotor stator using isopropyl myristate as the oil phase and Pluronic F-127 as the emulsifier for the aqueous external phase.The effect of emulsification process parameters was investigated.Spray drying of the produced emulsions was attempted to obtain a stabilized dry powder after the addition of a coating agent.The effect of different coating agents(maltodextrin,inulin,gum arabic,pectin,whey and polyvinylpyrrolidone),drying temperature(120-170℃),and feed flow rate(3-9 ml·min^(-1))on the obtained particles was evaluated.Results revealed that the emulsion formulation of 20/80(O/W)with 1.5%(mass fraction)of Pluronic F-127 as stabilizer in the aqueous phase resulted in a stable nanoemulsion with droplet sizes in the range of 259-276 nm with a unimodal and sharp size distribution.The extract in the nanoemulsion was well protected at room temperature with a degradation rate of lycopene of about 50%during a month of storage time.The most stable emulsions were then processed by spray drying to obtain a dry powder.Spray drying was particularly successful when using maltodextrin as a coating agent,obtaining dried spherical particles with mean diameters of(4.87±0.17)μm with a smooth surface.The possibility of dissolving the spray dried powder in order to repristinate.The original emulsion was also successfully verified. 展开更多
关键词 emulsions Powders Stability Isopropyl myristate LYCOPENE SPRAY-DRYING
下载PDF
Flexible,durable,and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation 被引量:1
19
作者 Jianfei Wu Yuxuan Su +7 位作者 Ziwei Cui Yang Yu Jiafu Qu Jundie Hu Yahui Cai Jianzhang Li Dan Tian Qichun Zhang 《Nano Research》 SCIE EI CSCD 2023年第4期5665-5675,共11页
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble... The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation. 展开更多
关键词 nanocellulose-based membrane oil/water emulsions separation ultra-high flux good durability anti-fouling property
原文传递
An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation 被引量:4
20
作者 Shanshan Zhao Zhu Tao +5 位作者 Liwei Chen Muqiao Han Bin Zhao Xuelin Tian Liang Wang Fangang Meng 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期193-203,共11页
Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation.However,conventional membranes usually suffer from severe pore clogging and surface fouling,and thus,nove... Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation.However,conventional membranes usually suffer from severe pore clogging and surface fouling,and thus,novel membranes with superior wettability and antifouling features are urgently required.Herein,we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride(PVDF)substrate.Membrane morphology and surface chemistry were studied using a series of characterization techniques.The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating.It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions.Moreover,the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface,which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water(O/W)emulsion separation.The modified membrane exhibited a competitive flux of~428 L/(m^(2)·h·bar)after three filtration cycles,which was 70%higher than that of the pristine PVDF membrane.These results suggest that the novel underwatersuperoleophobic membrane can potentially be used for sustainable O/W emulsions separation,and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity. 展开更多
关键词 ANTIFOULING Catechol/chitosan co-deposition oil-in-water emulsions separation Underwater superoleophobic
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部