期刊文献+
共找到28,994篇文章
< 1 2 250 >
每页显示 20 50 100
Procion MX Dyes在彩色蜡染制作工艺中的应用研究
1
作者 余宏刚 《山东纺织科技》 2024年第2期10-13,共4页
文章以彩色蜡染制作工艺为研究对象,将文献研究法与实践相结合,从画蜡技巧、上色与固色原理、艺术表现技巧等方面解读Procion MX Dyes在彩色蜡染制作工艺中的应用原则和技巧。借助Procion MX Dyes的应用,提升了彩色蜡染的艺术表现力和... 文章以彩色蜡染制作工艺为研究对象,将文献研究法与实践相结合,从画蜡技巧、上色与固色原理、艺术表现技巧等方面解读Procion MX Dyes在彩色蜡染制作工艺中的应用原则和技巧。借助Procion MX Dyes的应用,提升了彩色蜡染的艺术表现力和使用价值,为蜡染产业的发展提供了可行性参考。 展开更多
关键词 低温活性染料 彩色蜡染 蜡染工艺 印染工艺 工艺创新
下载PDF
Progress in the research on organic piezoelectric catalysts for dye decomposition
2
作者 Zhaoning Yang Xiaoxin Shu +3 位作者 Di Guo Jing Wang Hui Bian Yanmin Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期245-260,共16页
Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminan... Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored. 展开更多
关键词 piezoelectric catalysis piezoelectric material dye decomposition organic materials
下载PDF
Progress and prospects of Mg-based amorphous alloys in azo dye wastewater treatment
3
作者 Yanan Chen Fengchun Chen +5 位作者 Liang Li Chen Su Bo Song Hongju Zhang Shengfeng Guo Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期873-889,共17页
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem... Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice. 展开更多
关键词 Mg-based amorphous alloys Azo dyes DEALLOYING Surface modification Wastewater degradation.
下载PDF
Bioremediation of Textile Azo Dyes Amido Black 10B, Reactive Black 5, Reactive Blue 160 by Lentinus squarrosulus AF5 and Assessment of Toxicity of the Degraded Metabolites
4
作者 Anshu Mathur Chandrachur Ghosh +2 位作者 Partha Roy Ramasare Prasad Rajesh Pratap Singh 《Advances in Microbiology》 CAS 2024年第2期137-161,共25页
Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% d... Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic. 展开更多
关键词 Lentinus squarrosulus AF5 Azo dyes FTIR 1H NMR CATABOLISM CYTOTOXICITY
下载PDF
Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb_(2)O_(5)@PAN/PVDF/ANO composite nanofibers
5
作者 Aditya Rianjanu Kurniawan Deny Pratama Marpaung +8 位作者 Elisabeth Kartini Arum Melati Rizky Aflaha Yudha Gusti Wibowo I Putu Mahendra Nursidik Yulianto Januar Widakdo Kuwat Triyana Hutomo Suryo Wasisto Tarmizi Taher 《Nano Materials Science》 EI CAS CSCD 2024年第1期96-105,共10页
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo... This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications. 展开更多
关键词 Hierarchical nanostructure Composite nanofiber Niobium pentoxide dye degradation Synergetic adsorption and photocatalysis
下载PDF
Synthesis and Characterization of Novel Schiff Base for Enhanced Dye-Sensitized Solar Cell Photo-Response Mechanism
6
作者 Raphael Shadai Oguike Hanatu Akanagn Omolara Oni 《Crystal Structure Theory and Applications》 2024年第2期11-20,共10页
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o... The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs. 展开更多
关键词 dye-Sensitized Solar Cell Schiff Base PHOTOSENSITIZER Optical Transparency BENZIL PYRIDINE
下载PDF
One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes
7
作者 Yujia Cui Zhiqiang Tan +2 位作者 Yanan Wang Shuxian Shi Xiaonong Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期309-318,共10页
In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGD... In this study,a new tannic acid adsorbent(ethylene glycol diglycidyl ether crosslinked tannic acid,TAEGDE)for adsorptive removal of dyes from water was prepared using EGDE as a cross-linking agent.The resultant TA-EGDE was in particulate form with rough surface morphology and a diameter ranging from 10 to 30μm.The adsorption performance of the TA-EGDE was evaluated in a flow-through mode using water samples contaminated with methylene blue(MB)and two-component mixed dyes,respectively.The TA-EGDE provided adsorption capacity up to 721.8 mg·g^(-1)at 65°C for MB.It showed a high removal efficiency(99%)of MB(50 mg·L^(-1))from the water sample and could recovery 90%of the adsorbed MB by eluting with acidic ethanol aqueous solution.The excellent adsorption of MB and neutral red on the TA-EGDE may be the result of the synergy of electrostatic interaction andπ-πinteraction.Furthermore,the TA-EGDE could separate dyes from water samples contaminated with twocomponent mixed dyes with a separation coefficient ranging from 1.8 to 36.5.The anionic TA-EGDE would be an effective adsorbent to remove and recycle dyes from the contaminated water. 展开更多
关键词 Tannic acid Water treatment Cationic dyes ADSORPTION Recovery dyes separation
下载PDF
Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing
8
作者 Aiqin Gao Xiang Luo +3 位作者 Huanghuang Chen Aiqin Hou Hongjuan Zhang Kongliang Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期264-271,共8页
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des... The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization. 展开更多
关键词 Reactive dyes Non-aqueous dyeing High fixation rate Waste water Synthesis RECOVERY
下载PDF
Visible-light degradation of azo dyes by imine-linked covalent organic frameworks
9
作者 Hongbo Xue Sen Xiong +1 位作者 Kai Mi Yong Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期194-199,共6页
Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved i... Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications. 展开更多
关键词 Covalent organic frameworks dyeS Photocatalytic degradation Porous polymer Water pollution
下载PDF
CI Acid Orange 52 Dye Removal Using Natural and Formulated Clay-Lime Materials: Isotherm, Kinetic and Thermodynamic Studies
10
作者 Fumba Gaston Essomba Jean Serge +4 位作者 Ankoro Naphtali Odogu Kouotou Daouda Bélibi Bélibi Placide Désiré Ndi Julius Nsami Ketcha Mbadcam Joseph 《Journal of Materials Science and Chemical Engineering》 2023年第11期48-74,共27页
The main objective of the study is to improve the removal efficiency of Ourlago-kaolin (Kao), sodium montmorillonite (Na-MMT), and two formulated clay-lime (F13 and F23) towards CI Acid Orange 52 dye (AO52). F13 and F... The main objective of the study is to improve the removal efficiency of Ourlago-kaolin (Kao), sodium montmorillonite (Na-MMT), and two formulated clay-lime (F13 and F23) towards CI Acid Orange 52 dye (AO52). F13 and F23 were obtained by chemical stabilization through thermal treatment at 300°C. Fourier Transform Infrared spectra showed different surface functional groups on the clay materials, X-ray diffraction patterns revealed the raw materials contain many crystalline phases, scanning electron microscopy micrographs showed the variation of the layered structures of different clay materials, energy dispersive X-Ray analysis micrographs revealed compositional information and thermogravimetric-differential scanning calorimetry curves indicated the higher weight loss of 11.26% and 11.38% were observed for F13 and F23 respectively. BET surface area analyzed gave 133.0071 m<sup>2</sup>•g<sup>−1</sup> for F13 and 132.34803 m<sup>2</sup>•g<sup>−1</sup> for F23. The optimum pH value was 2.0 for Kao and Na-MMT. The adsorption experiments indicated that F13 and F23 have the maximum uptake abilities of 7.8740 and 3.1645 mg•g<sup>−1</sup>, respectively, compared to Kao (0.8761 mg•g<sup>−1</sup>) and Na-MMT (2.6178 mg•g<sup>−1</sup>). The pseudo-second-order model well described the adsorption kinetic model of AO52 dye onto the overall samples;Langmuir and Freundlich’s isotherms appropriately described the uptake mechanism. The positive values of ∆G° and negative value ∆H° indicated that the adsorption process was spontaneous and endothermic for Na-MMT, and non-spontaneous and exothermic for Kao, F13, and F23 because of their positive values of ∆G° and negative value of ∆H°. The modified clays have higher adsorption capacities and better life cycles compared hence opening new avenues for efficient wastewater treatment. 展开更多
关键词 Ourlago-Kaolin Sodium Montmorillonite Formulated Clay Lime Adsorption Acid dye THERMODYNAMIC
下载PDF
States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions
11
作者 Zhaoyang Han Ling Sun +6 位作者 Yingying Chu Jing Wang Chenyu Wei Qianlei Jiang Changbao Han Hui Yan Xuemei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期197-208,共12页
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-... Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere. 展开更多
关键词 Stock graphene oxide Surface functional groups Existence state ADSORBATES Enhanced adsorption dyeS
下载PDF
Adsorption of Anionic and Cationic Dyes from Textile Effluents by Activated Carbon Prepared from Sawdust and Fish Scale
12
作者 Rumana A. Jahan Md. Mahedi Hassan +1 位作者 Ashequl Alam Rana Mohammad Mainul Karim 《Advances in Chemical Engineering and Science》 2023年第3期189-202,共14页
In Bangladesh, there are thousands of textile-dying industries spread across the country’s many regions, the majority of which involve knitting and dying. The dyeing industry uses an enormous quantity of water, as we... In Bangladesh, there are thousands of textile-dying industries spread across the country’s many regions, the majority of which involve knitting and dying. The dyeing industry uses an enormous quantity of water, as well as colors and chemicals. After the dying process has been completed, they also release a significant amount of wastewater. Cotton, wool, and polyester fiber are typically dyed with textile dyes such as reactive, acid, and disperse dyes. These dyes are utilized most frequently in the respective sectors. The dyes’ colorants are extremely poisonous and dangerous to all forms of life, including aquatic life and living things. The present work has been intended to investigate whether or not it is practicable to remove commonly used textile dyes simultaneously from an aqueous dye solution using an adsorption technique that makes use of a variety of different adsorbents. This study focuses on the removal of color from two distinct types of dyes—Methylene Blue and Reactive Blue-250 which are cationic and anionic in nature respectively, using two different types of activated carbon adsorbents prepared from sawdust and fish scale. Dye removal capacity was tested as a function of contact time, the dosage of the adsorbent, pH during the treatment process, temperature and initial concentration of dye. The applicability of the Langmuir and Freundlich adsorption isotherms in describing experimental data was investigated. The micro and mesoporous activated carbon prepared from sawdust and fish scale identified by Scanning Electron Microscopy (SEM) images indicated that such adsorbents with a large surface area have more dye adsorption potential whereas the variation in dye adsorption occurs due to variation in surface area. From the overall experimental data, maximum removal of 95.39% and 87.92% was found for Methylene Blue and Reactive Blue-250 respectively by sawdust, and 90.64% removal of Methylene Blue by using fish scale. 展开更多
关键词 Textile Wastewater Ionic dyes REMOVAL Activated Carbon ADSORBENT
下载PDF
Progress in research and application of vital dyes in chromovitrectomy
13
作者 ZHANG Ke-ren LEI Chun-yan ZHANG Mei-xia 《Journal of Hainan Medical University》 2023年第4期74-78,共5页
Chromovitrectomy is a surgical method that uses intraocular dyes during vitreoretinal surgery to stain transparent tissues in the eye such as the posterior vitreous cortex,epiretinal membrane and inner limiting membra... Chromovitrectomy is a surgical method that uses intraocular dyes during vitreoretinal surgery to stain transparent tissues in the eye such as the posterior vitreous cortex,epiretinal membrane and inner limiting membrane for easy operation.It can avoid the intraocular complications associated with incomplete vitrectomy,incomplete epiretinal membrane peeling and incomplete internal limiting membrane peeling.At present,the commonly used vital dyes in clinic are as follows:indocyanine green,infracyanine green,triamcinolone acetonide,trypan blue,brilliant blue G.Indocyanine green was first used for intraocular staining,which can show the inner limiting membrane well.Following indocyanine green,trypan blue is used to identify idiopathic epiretinal membranes and triamcinolone acetonide is used to stain the vitreous.Recently,it has been discovered that natural dyes extracted from fruits,such as lutein and anthocyanins,are also used in intraocular vitrectomy.The main purpose of this review is to explore the research status and prospects of various intraocular stains in stained vitrectomy. 展开更多
关键词 Chromovitrectomy Vital dyes Indocyanine green Triamcinolone acetonide
下载PDF
Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
14
作者 Piyawan Nuengmatcha Arnannit Kuyyogsuy +3 位作者 Paweena Porrawatkul Rungnapa Pimsen Saksit Chanthai Prawit Nuengmatcha 《Water Science and Engineering》 EI CAS CSCD 2023年第3期243-251,共9页
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta... In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants. 展开更多
关键词 Magnetic zinc oxide/graphene/iron oxide PHOTOCATALYSIS dye pollutants CATALYST Degradation
下载PDF
In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation
15
作者 Yafei Su Xuke Zhang +2 位作者 Hui Li Donglai Peng Yatao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期103-111,共9页
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit... Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units. 展开更多
关键词 Zeolitic imidazolate framework Halloysite nanotubes 2D nanocomposites In-situ growth dye/salt separation membrane Antibacterial property
下载PDF
Grains add new colors to plant dyeing
16
作者 Zhao Xinhua 《China Textile》 2023年第2期12-13,共2页
Tinctoria in blue dye,rubia tinctorum and saf­flower in red dye,sophora,turmeric,and gardenia in yellow dye are well-known plant dyes.With the green upgrade of textile and clothing sector,in re­cent years,mo... Tinctoria in blue dye,rubia tinctorum and saf­flower in red dye,sophora,turmeric,and gardenia in yellow dye are well-known plant dyes.With the green upgrade of textile and clothing sector,in re­cent years,more plant dyes have been applied in the field of textile dyeing. 展开更多
关键词 dyeING dye YELLOW
下载PDF
Desalting?Reversible dyeing?Dyeing and printing industry ushers in big changes!
17
《China Textile》 2023年第4期27-27,共1页
Textile dyeing is the second-largest polluter of water worldwide,not including salt use.After the salt is used,it is transported to landfills or the ocean.Oceans have increased 0.5%salinity over past 10 years.Textile ... Textile dyeing is the second-largest polluter of water worldwide,not including salt use.After the salt is used,it is transported to landfills or the ocean.Oceans have increased 0.5%salinity over past 10 years.Textile dyeing produces 2.8%of Global GHG,because of its huge demand of power from its operations.Now,the world’s dyeing and printing industry energy saving,consumption reduction,emission reduction,green,safety requirements are increasing.Green dyeing and printing have become the mainstream of global dyeing and printing industry in future.The continuous innovation and improvement of textile dyeing process and dyestuff is of extraordinary significance in today’s increasingly severe energy situation. 展开更多
关键词 dyeING PRINTING dyeING
下载PDF
Green and healthy innovation is the future of dyeing and printing industry
18
《China Textile》 2023年第3期33-33,共1页
In the past year,the downside risks of the world economy increased,and China's domestic economy was impacted by multiple factors such as pandemic situation and extreme weather disasters,and the uncertainty of the ... In the past year,the downside risks of the world economy increased,and China's domestic economy was impacted by multiple factors such as pandemic situation and extreme weather disasters,and the uncertainty of the dyeing and printing industry increased significantly.Last year,the production and benefit of the industry showed an obviously downward trend.The export of major dyeing and printing products has maintained growth,and the export performance has been good,but the rate has gradually declined.Generally speaking,in 2023,the industry and enterprises are stillfacing considerable production and operation pressure. 展开更多
关键词 dyeING PRINTING maintained
下载PDF
壳聚糖复合水凝胶的制备方法及在水处理中的应用 被引量:1
19
作者 冯颖 李可心 +4 位作者 张宏 于汉哲 马标 张建伟 董鑫 《工业水处理》 CAS CSCD 北大核心 2024年第2期17-26,共10页
壳聚糖由于来源广、吸附性能强和可自然降解等优点成为备受关注的天然吸附剂。壳聚糖复合水凝胶(CCH)材料是以壳聚糖为主要原料,通过化学、物理等方法改性后得到的新型复合材料。介绍了化学交联、物理交联以及互穿网络等合成壳聚糖复合... 壳聚糖由于来源广、吸附性能强和可自然降解等优点成为备受关注的天然吸附剂。壳聚糖复合水凝胶(CCH)材料是以壳聚糖为主要原料,通过化学、物理等方法改性后得到的新型复合材料。介绍了化学交联、物理交联以及互穿网络等合成壳聚糖复合水凝胶的主要方法。综述了近年来使用CCH对工业废水中常见染料、重金属离子和其他常见污染物的吸附机理和处理效果,讨论了当前利用CCH在处理工业废水中各种污染物时存在的问题及解决方法。最后对CCH在合成方法、选择性吸附、回收利用和智能改性等方面进行了展望,为深入研究提高CCH材料性能及拓宽其在工业废水处理中的应用范围提供了思路。 展开更多
关键词 壳聚糖 水凝胶 吸附 工业废水 重金属离子 染料
下载PDF
中国传统印染技艺研究发展现状 被引量:1
20
作者 陈秀芳 《纺织科学与工程学报》 CAS 2024年第1期111-116,共6页
七项传统印染技艺被列入国家级非物质文化遗产代表性项目名录,分别是扎染技艺、蜡染技艺、蓝印花布印染技艺、香云纱染整技艺、艾德莱斯绸织染技艺、蓝夹缬以及和枫香印染技艺。当前研究重点主要有三个方面,包括纹样创新应用、产品设计... 七项传统印染技艺被列入国家级非物质文化遗产代表性项目名录,分别是扎染技艺、蜡染技艺、蓝印花布印染技艺、香云纱染整技艺、艾德莱斯绸织染技艺、蓝夹缬以及和枫香印染技艺。当前研究重点主要有三个方面,包括纹样创新应用、产品设计开发及生产性保护和数字化保护。同时,香云纱染整技艺侧重薯莨染色工艺及河泥作用机理的研究,艾德莱斯绸织染技艺侧重宽幅及双面织物织造工艺的研究。另外,各项传统印染技艺在中国知网文献数量的差异也在一定程度上反映人们对其研究重视程度的不同。 展开更多
关键词 扎染 蜡染 蓝印花布 香云纱 艾德莱斯绸 蓝夹缬 枫香染
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部