The effect of the inlet gas pressure,supplementary gas pressure and nozzle channel dispersion angle on the pre-breakup behavior of Ti-6Al-4V(TC4)discontinuous droplets during EIGA was investigated by combining numeric...The effect of the inlet gas pressure,supplementary gas pressure and nozzle channel dispersion angle on the pre-breakup behavior of Ti-6Al-4V(TC4)discontinuous droplets during EIGA was investigated by combining numerical simulation with experiments.The results show that the axial velocity at the recirculation zone before the stagnation location was first increased and decreased then increased significantly after the peak value,while the pressure of the recirculation zone increased with the increase in inlet pressure.With the supplementary pressure increasing,the velocity magnitude and range of the recirculation zone gradually decreased.As the dispersion angle of the nozzle channel increased,the pre-breakup efficiency of droplets gradually decreased,but the adhesion phenomenon of droplets on the inner wall surface of the nozzle channel(IWSNC)gradually weakened.Under the inlet pressure of 4 MPa,a supplementary pressure of 0.05 MPa,and the dispersion angle of 15°,the uniform and spherical TC4 powders with diameter of 70μm were prepared,which was consistent with the simulation results.The optimized process parameters is a balance between the size of the pre-atomized particles and the back-spraying and bonding phenomenons of droplets.展开更多
As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic...As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic liquid microemulsion was used as a collector to enhance its floatability. Flotation test results demonstrated the microemulsion collector exhibited a superior collecting ability. A satisfactory separation performance of 78.66% combustible material recovery was obtained with the microemulsion collector consumption of 6 kg/t, which was equivalent to the flotation performance of diesel at a dosage of25 kg/t. The dispersion behavior of the microemulsion collector was investigated using the CryogenicTransmission Electron Microscopy. The interaction mechanism of the microemulsion collector on enhancing the low-rank coal flotation was elucidated through the Zeta potential and contact angle measurements, the Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The microemulsion collector exhibited superior dispersibility, which was dispersed into positively charged oil droplets with an average size of 160.21 nm in the pulp. Furthermore, the nano-oil droplets could be more efficiently adsorbed on the low-rank coal surface through electrostatic attraction, resulting in the improvement of its hydrophobicity. Thus, the microemulsion collector shows great application potential in improving the flotation performance of low-rank coal.展开更多
The emergence of the novel coronavirus has led to a global pandemic which has led to the airline industry facing severe losses. For air travel to recover, airlines need to ensure safe air travel. In this paper, the au...The emergence of the novel coronavirus has led to a global pandemic which has led to the airline industry facing severe losses. For air travel to recover, airlines need to ensure safe air travel. In this paper, the authors have modeled droplet dispersion after a single breath from an index patient. Computational Fluid Dynamics (CFD) simulations are conducted using the k-ωSST turbulence model in ANSYS Fluent. The authors have taken into consideration several parameters such as the size of the mouth opening, the velocity of the cabin air as well as the number of droplets being exhaled by the index patient to ensure a realistic simulation. Preliminary results indicate that after a duration of 20 s, droplets from the index patient disperse within a 10 m2 cabin area. About 75% of the droplets are found disperse for up to 2 m axially behind the index patient. This could possess an enhanced risk to passengers sitting behind the index patient. Ultimately, this paper provides an insight into the potential of CFD to visualise droplet dispersal and give impetus to ensure that necessary mitigating measures can be taken to reduce the risk of infection through droplet dispersal.展开更多
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectra...From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.展开更多
Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previousl...Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.展开更多
Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance i...Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance in the optimal design of extraction columns as well as mixer–settlers. In this paper, the method of built-in endoscopic probe combined with pulse laser was adopted to measure the droplet size in liquid–liquid dispersions with a pump-impeller in a rectangular mixer. The dispersion law of droplets with holdup range 1% to 24% in batch process and larger flow ratio range 1/5 to 5/1 in continuous process was studied. Under the batch operation condition, the DSD abided by log-normal distribution. With the increase of impeller speed or decrease of dispersed phase holdup, the d32 decreased. In addition, a prediction model of d32 of kerosene/deionized system was established as d32/D = 0.13(1 + 5.9φ)We-0.6. Under the continuous operation condition, the general model for droplet size prediction of kerosene/water system was presented as d32/D = C3(1 + C4φ)We-0.6. For the surfactant system and extraction system, the prediction models met a general model as d32/D = bφnWe-0.6.展开更多
Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diamet...Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diameter, size distribution and liquid flux distribution were quantitatively analyzed. The result showed that the mean droplet diameter decreased with the increase of rotational speed and the number of rotors;whilst there is little influence on the inlet flow rate. In the experimental range, the minimum value of mean droplet diameter is 0.57 mm, 0.48 mm, 0.41 mm in the two-staged, three-staged and four-staged rotors, respectively. The Rosin–Rammler(R–R) distribution could describe the droplet size distribution appropriately, and it became uniform with the increase of rotational speed and the number of rotor, while the inlet flow rate had little effect on the droplet size distribution. The liquid flux distribution curves were always unimodal. With the increase of rotational speed, the location of maximum liquid flux ratio moved from zone 3 to zone 4 and this value decreased from 22.1% to 18.1%. Using Coefficient of Variation(CV) to indicate the uniformity of liquid flux distribution, it was found that the CV decreases from 47.5% to 22.7%when the number of rotor increased from 2 to 4.展开更多
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f...Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.展开更多
This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses ...This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method.The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.展开更多
In this study, the mean droplet diameter in the cavity zone and the total mass transfer area of a multi-stage highspeed disperser(HSD) reactor with different packing combinations were measured and evaluated. The effec...In this study, the mean droplet diameter in the cavity zone and the total mass transfer area of a multi-stage highspeed disperser(HSD) reactor with different packing combinations were measured and evaluated. The effects of rotational speed and packing radius, as well as the packing ring radius and numbers, on the mean droplet diameter and the total mass transfer area were evaluated. A model was established to calculate the mass transfer area in the cavity zone in the HSD reactor, and it was found that the packings contribute 61%–82% of the total mass transfer area. A correlation for predicting the mass transfer area in the packing zone was regressed by the dimensionless analysis method. An enhancement factor based on the mass transfer area in the packing zone was proposed to evaluate the effect of packing combination on mass transfer area. Two optimum packing combinations were proposed in consideration of the mean droplet diameter and the enhancement factor.展开更多
云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模...云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。展开更多
Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under diff...Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under different aerosol conditions using three-dimensional large eddy simulations(LES).It is found that cloud droplet mean radius,standard deviation,and relative dispersion generally decrease as aerosol mixing ratio increases from 25 mg-1(clean case) to 100 mg-1(moderate case),and to 2000 mg-1(polluted case).Under all the three simulated aerosol conditions,cloud droplet mean radius and standard deviation increase with height.However,droplet relative dispersion increases with height only in the polluted case,and does not vary with height in the clean and moderate cases.The mechanisms for cloud droplet dispersion are also investigated.An additional simulation without considering droplet collision-coalescence and sedimentation under the aerosol mixing ratio of 25 mg-1 shows smaller values of droplet mean radius,standard deviation,and relative dispersion as compared to the base clean case.This indicates that droplet collision-coalescence plays an important role in broadening droplet spectra.Results also suggest that the impact of homogeneous mixing on cumulus cloud droplet spectra is significant under all the three simulated aerosol conditions.In weak mixing(strong updraft) regions where clouds are closer to be adiabatic,cloud droplets tend to have larger mean radius,smaller standard deviation,and hence smaller relative dispersion than those in stronger mixing(downdraft or weak updraft) regions.The parameterized cloud optical depth in terms of cloud liquid water content,droplet number concentration,and relative dispersion is only slightly smaller than the result calculated from detailed droplet spectra,indicating that current parameterization of cloud optical depth as used in many GCMs is plausible for low clouds.展开更多
基金Funded by the National Natural Science Foundation of China(No.51627805)the Natural Scienceof Guangdong Province,China(No.2015A030312003)the Science and Technology Research Project of Guangdong Province,China(No.2014B010129003)。
文摘The effect of the inlet gas pressure,supplementary gas pressure and nozzle channel dispersion angle on the pre-breakup behavior of Ti-6Al-4V(TC4)discontinuous droplets during EIGA was investigated by combining numerical simulation with experiments.The results show that the axial velocity at the recirculation zone before the stagnation location was first increased and decreased then increased significantly after the peak value,while the pressure of the recirculation zone increased with the increase in inlet pressure.With the supplementary pressure increasing,the velocity magnitude and range of the recirculation zone gradually decreased.As the dispersion angle of the nozzle channel increased,the pre-breakup efficiency of droplets gradually decreased,but the adhesion phenomenon of droplets on the inner wall surface of the nozzle channel(IWSNC)gradually weakened.Under the inlet pressure of 4 MPa,a supplementary pressure of 0.05 MPa,and the dispersion angle of 15°,the uniform and spherical TC4 powders with diameter of 70μm were prepared,which was consistent with the simulation results.The optimized process parameters is a balance between the size of the pre-atomized particles and the back-spraying and bonding phenomenons of droplets.
基金financially supported by the National Key Research and Development Program of China (No. 2020YFC1908801)the National Natural Science Foundation of China (No. 52204287)+1 种基金the National Natural Science Foundation of China (No. 52004250)the Key R&D and Promotion Projects in Henan Province (No. 212102310009)。
文摘As the poor dispersion of oily collectors and the inferior hydrophobicity of the mineral surface, the lowrank coal has an unsatisfactory flotation performance when using traditional collectors. In this paper, an ionic liquid microemulsion was used as a collector to enhance its floatability. Flotation test results demonstrated the microemulsion collector exhibited a superior collecting ability. A satisfactory separation performance of 78.66% combustible material recovery was obtained with the microemulsion collector consumption of 6 kg/t, which was equivalent to the flotation performance of diesel at a dosage of25 kg/t. The dispersion behavior of the microemulsion collector was investigated using the CryogenicTransmission Electron Microscopy. The interaction mechanism of the microemulsion collector on enhancing the low-rank coal flotation was elucidated through the Zeta potential and contact angle measurements, the Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis.The microemulsion collector exhibited superior dispersibility, which was dispersed into positively charged oil droplets with an average size of 160.21 nm in the pulp. Furthermore, the nano-oil droplets could be more efficiently adsorbed on the low-rank coal surface through electrostatic attraction, resulting in the improvement of its hydrophobicity. Thus, the microemulsion collector shows great application potential in improving the flotation performance of low-rank coal.
文摘The emergence of the novel coronavirus has led to a global pandemic which has led to the airline industry facing severe losses. For air travel to recover, airlines need to ensure safe air travel. In this paper, the authors have modeled droplet dispersion after a single breath from an index patient. Computational Fluid Dynamics (CFD) simulations are conducted using the k-ωSST turbulence model in ANSYS Fluent. The authors have taken into consideration several parameters such as the size of the mouth opening, the velocity of the cabin air as well as the number of droplets being exhaled by the index patient to ensure a realistic simulation. Preliminary results indicate that after a duration of 20 s, droplets from the index patient disperse within a 10 m2 cabin area. About 75% of the droplets are found disperse for up to 2 m axially behind the index patient. This could possess an enhanced risk to passengers sitting behind the index patient. Ultimately, this paper provides an insight into the potential of CFD to visualise droplet dispersal and give impetus to ensure that necessary mitigating measures can be taken to reduce the risk of infection through droplet dispersal.
基金Project supported by the Special Foundation for China Nonprofit Industry (Grant No. GYHY200706036)the National Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40825008)the National Basic Research Program of China (Grant No. 2010CB833406)
文摘From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41822504, 42175099, 42027804, 42075073 and 42075077)the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science+4 种基金LIU is supported by the U.S. Department of Energy Atmospheric System Research (ASR) Program (DE-SC00112704)Solar Energy Technologies Office (SETO) under Award 33504LUO is supported by Research Fund of Civil Aviation Flight University of China (J2022-037)LI is supported by Research Fund of Civil Aviation Flight University of China (09005001)WU is supported by Research on Key of Manmachine Ring in Plateau Flight (FZ2020ZZ03)
文摘Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.
基金Supported by the National Natural Science Foundation of China(NSFC)(21636004)the National Safety Academy Foundation(U1530107)the National Basic Research Program of China(2012CBA01203).
文摘Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance in the optimal design of extraction columns as well as mixer–settlers. In this paper, the method of built-in endoscopic probe combined with pulse laser was adopted to measure the droplet size in liquid–liquid dispersions with a pump-impeller in a rectangular mixer. The dispersion law of droplets with holdup range 1% to 24% in batch process and larger flow ratio range 1/5 to 5/1 in continuous process was studied. Under the batch operation condition, the DSD abided by log-normal distribution. With the increase of impeller speed or decrease of dispersed phase holdup, the d32 decreased. In addition, a prediction model of d32 of kerosene/deionized system was established as d32/D = 0.13(1 + 5.9φ)We-0.6. Under the continuous operation condition, the general model for droplet size prediction of kerosene/water system was presented as d32/D = C3(1 + C4φ)We-0.6. For the surfactant system and extraction system, the prediction models met a general model as d32/D = bφnWe-0.6.
基金Supported by ‘‘The Design and Optimisation of High Speed Rotating Mixing Nozzles for Liquid-Liquid Applications” PhD Studentship provided by Huntsman Europe(Belgium)
文摘Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diameter, size distribution and liquid flux distribution were quantitatively analyzed. The result showed that the mean droplet diameter decreased with the increase of rotational speed and the number of rotors;whilst there is little influence on the inlet flow rate. In the experimental range, the minimum value of mean droplet diameter is 0.57 mm, 0.48 mm, 0.41 mm in the two-staged, three-staged and four-staged rotors, respectively. The Rosin–Rammler(R–R) distribution could describe the droplet size distribution appropriately, and it became uniform with the increase of rotational speed and the number of rotor, while the inlet flow rate had little effect on the droplet size distribution. The liquid flux distribution curves were always unimodal. With the increase of rotational speed, the location of maximum liquid flux ratio moved from zone 3 to zone 4 and this value decreased from 22.1% to 18.1%. Using Coefficient of Variation(CV) to indicate the uniformity of liquid flux distribution, it was found that the CV decreases from 47.5% to 22.7%when the number of rotor increased from 2 to 4.
文摘Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.
基金supported by the National Natural Science Foundation of China(Grants 11072011 and 11572013)the Doctoral Fund of Innovation of the Beijing University of Technology
文摘This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method.The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.
基金Supported by the National Natural Science Foundation of China(21676007,21506005)
文摘In this study, the mean droplet diameter in the cavity zone and the total mass transfer area of a multi-stage highspeed disperser(HSD) reactor with different packing combinations were measured and evaluated. The effects of rotational speed and packing radius, as well as the packing ring radius and numbers, on the mean droplet diameter and the total mass transfer area were evaluated. A model was established to calculate the mass transfer area in the cavity zone in the HSD reactor, and it was found that the packings contribute 61%–82% of the total mass transfer area. A correlation for predicting the mass transfer area in the packing zone was regressed by the dimensionless analysis method. An enhancement factor based on the mass transfer area in the packing zone was proposed to evaluate the effect of packing combination on mass transfer area. Two optimum packing combinations were proposed in consideration of the mean droplet diameter and the enhancement factor.
文摘云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。
基金Supported by the 11th Five-Year National Key Technology R&D Program of China under Grant No. 2006BAC12B003National Natural Science Foundation of China under Grant No. 40675004
文摘Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under different aerosol conditions using three-dimensional large eddy simulations(LES).It is found that cloud droplet mean radius,standard deviation,and relative dispersion generally decrease as aerosol mixing ratio increases from 25 mg-1(clean case) to 100 mg-1(moderate case),and to 2000 mg-1(polluted case).Under all the three simulated aerosol conditions,cloud droplet mean radius and standard deviation increase with height.However,droplet relative dispersion increases with height only in the polluted case,and does not vary with height in the clean and moderate cases.The mechanisms for cloud droplet dispersion are also investigated.An additional simulation without considering droplet collision-coalescence and sedimentation under the aerosol mixing ratio of 25 mg-1 shows smaller values of droplet mean radius,standard deviation,and relative dispersion as compared to the base clean case.This indicates that droplet collision-coalescence plays an important role in broadening droplet spectra.Results also suggest that the impact of homogeneous mixing on cumulus cloud droplet spectra is significant under all the three simulated aerosol conditions.In weak mixing(strong updraft) regions where clouds are closer to be adiabatic,cloud droplets tend to have larger mean radius,smaller standard deviation,and hence smaller relative dispersion than those in stronger mixing(downdraft or weak updraft) regions.The parameterized cloud optical depth in terms of cloud liquid water content,droplet number concentration,and relative dispersion is only slightly smaller than the result calculated from detailed droplet spectra,indicating that current parameterization of cloud optical depth as used in many GCMs is plausible for low clouds.