[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-D...[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.展开更多
文摘[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.