In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and h...In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.展开更多
An unbridged zirconocene complex bis(1,2-diphenylcyclopentadienyl)zirconium dichloride [(1,2-Ph2-C5H3)2ZrCl2] 1 has been synthesized and structurally characterized. When activated by MAO, 1 produces ultra-high molecul...An unbridged zirconocene complex bis(1,2-diphenylcyclopentadienyl)zirconium dichloride [(1,2-Ph2-C5H3)2ZrCl2] 1 has been synthesized and structurally characterized. When activated by MAO, 1 produces ultra-high molecular weight polyethylene with high melting transition temperature, as well as atactic oligopropylene with average molecular weight of ~1150 g mol-1.展开更多
The NdCl_3/MgCl_2 bisupported catalyst was prepared by using NdCl_3 ,MgCl_2, (CH_3)_2(CH_2)_2 OH and TiCl_4. It is shown that the structure of bisupported catalyst was different from those of either NdCl_3 or MgCl_2 s...The NdCl_3/MgCl_2 bisupported catalyst was prepared by using NdCl_3 ,MgCl_2, (CH_3)_2(CH_2)_2 OH and TiCl_4. It is shown that the structure of bisupported catalyst was different from those of either NdCl_3 or MgCl_2 single supported catalyst. A peculiar type of kinetic curve for ethylene polymerization was found.展开更多
As one of the most important products in petrochemical industry, polyolefin, including mainly polyethylene, polypropylene and α\|olefin polymers, is also a major raw material for plastics industry. The market demand ...As one of the most important products in petrochemical industry, polyolefin, including mainly polyethylene, polypropylene and α\|olefin polymers, is also a major raw material for plastics industry. The market demand for polyolefin in 2002 reached 88 Mt, making two thirds of the demand for thermoplastics. The growth rate of demand will be 5%-7 % in the next five years\+\{\\}. Because of its close relation to nations economy and its peoples daily life, the output of polyolefin becomes an important index of the nations industria lization and modernization level.展开更多
The design and synthesis of transition metal complexes with high thermal stability in olefin polymerization have become more and more important in order to meet the need of industrial application.This review focuses o...The design and synthesis of transition metal complexes with high thermal stability in olefin polymerization have become more and more important in order to meet the need of industrial application.This review focuses on the transition metal complex catalyst with high thermal stability containing different structures,including the backbone of bis(imino)pyridine,a-diimine and other types of ligands.Besides the catalytic activity,the influence of reaction temperature on the molecular weight and molecular weight distribution of the obtained polymer was also described.The plausible mechanism on the stability of catalysts at high temperature was proposed,which may give guidance to design catalyst with good thermal stability.展开更多
For the rational design of metal catalyst in olefin polymerization catalysis,various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center,among which the"sa...For the rational design of metal catalyst in olefin polymerization catalysis,various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center,among which the"sandwich"type turned out to be an eficient category in achieving high molecular weight polyolefin.In the a-dimine system,the"sandwich"type catalysts were built using the typical 8-aryl-naphthyI framework.In this contribution,by introducing the rotationally restrained benzosuberyl substituent into the ortho-position of N-aryl rings,a new class of "sandwich-like"a-diimine nickel catalysts was constructed and fully identified.The rotationally restrained benzosuberyl substituents played a"sandwich-like"function by capping the nickel center from two axial sites.Compared to the nickel catalyst Ni1 bearing freely rotated benzhydryl substituent,Ni2 featuring benzosubery|substituent enabled the increase(8 times)of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene.By further increasing the steric bulk of another ortho-site of the N-aryl ring,the polymer molecular weight even reached an ultrahigh level of 833 kDa(Mw=1857 kDa)using the optimized Ni3.Notably,these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate,with Ni3 giving the highest copolymer molecular weight(88 kDa)and the highest incorporation of comonmer(2.0 mol1%),along with high activity of up to 10^(5)g·mol^(-1)·h^(-1).展开更多
Cyclic olefin polymers(COPs) with high glass transition temperature, high transparency(higher than 80%) in the visible light range, excellent thermal stability and outstanding mechanical properties have been synth...Cyclic olefin polymers(COPs) with high glass transition temperature, high transparency(higher than 80%) in the visible light range, excellent thermal stability and outstanding mechanical properties have been synthesized by effective ring opening metathesis polymerization(ROMP) of exo-1,4,4 a,9,9 a,10-hexahydro-9,10(1′,2′)-benzeno-l,4-methanoanthracene(HBM) and dicyclopentadiene(DCPD) or norbornene(NBE) using WCl6/i-Bu3Al/ethanol/1-hexene catalyst system, followed by hydrogenation of double bonds. 1-Hexene acted as a molecular weight controller in the polymerization reaction, tuning the number-average molecular weight(Mn) of P-HBM from 5.8 × 10^4 to 41.1 × 10^4. The monomer composition and thermal properties of the copolymers were characterized by nuclear magnetic resonance(NMR), differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). The saturated polymers exhibited high decomposition temperatures(Td) around 340 ℃ and glass transition temperatures(Tg) in the range from 117.5 ℃ to 219.7 ℃. What is more, tensile tests indicated that the mechanical properties of the COPs could be effectively tuned in a wide range by introducing varying amount of small cyclic olefin such as DCPD or NBE.展开更多
Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity...Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.展开更多
Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadec...Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.展开更多
In this paper, highly active Ziegler-Natta catalysts of MgCl_2 supported TiCl_4 for synthesis ofpolyolefins, using di-n-butyl phthalate (DNBP) as internal donor and diphenyl dimethoxyl silane(DPDMS) as external donor,...In this paper, highly active Ziegler-Natta catalysts of MgCl_2 supported TiCl_4 for synthesis ofpolyolefins, using di-n-butyl phthalate (DNBP) as internal donor and diphenyl dimethoxyl silane(DPDMS) as external donor, have been prepared. The conditions controlling the treatment ofsupport were studied. The interactions of various components present in the catalysts and theirinfluences on catalytic performance were investigated. It is found that by using DNBP and DPDMSas internal and external donors together the polymer products with higher isotactic index can beobtained. Plausible structure model and mechanism were proposed.展开更多
文摘In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.
文摘An unbridged zirconocene complex bis(1,2-diphenylcyclopentadienyl)zirconium dichloride [(1,2-Ph2-C5H3)2ZrCl2] 1 has been synthesized and structurally characterized. When activated by MAO, 1 produces ultra-high molecular weight polyethylene with high melting transition temperature, as well as atactic oligopropylene with average molecular weight of ~1150 g mol-1.
文摘The NdCl_3/MgCl_2 bisupported catalyst was prepared by using NdCl_3 ,MgCl_2, (CH_3)_2(CH_2)_2 OH and TiCl_4. It is shown that the structure of bisupported catalyst was different from those of either NdCl_3 or MgCl_2 single supported catalyst. A peculiar type of kinetic curve for ethylene polymerization was found.
文摘As one of the most important products in petrochemical industry, polyolefin, including mainly polyethylene, polypropylene and α\|olefin polymers, is also a major raw material for plastics industry. The market demand for polyolefin in 2002 reached 88 Mt, making two thirds of the demand for thermoplastics. The growth rate of demand will be 5%-7 % in the next five years\+\{\\}. Because of its close relation to nations economy and its peoples daily life, the output of polyolefin becomes an important index of the nations industria lization and modernization level.
文摘The design and synthesis of transition metal complexes with high thermal stability in olefin polymerization have become more and more important in order to meet the need of industrial application.This review focuses on the transition metal complex catalyst with high thermal stability containing different structures,including the backbone of bis(imino)pyridine,a-diimine and other types of ligands.Besides the catalytic activity,the influence of reaction temperature on the molecular weight and molecular weight distribution of the obtained polymer was also described.The plausible mechanism on the stability of catalysts at high temperature was proposed,which may give guidance to design catalyst with good thermal stability.
基金the National Natural Science Foundation of China(Nos.21871250 and 22001244)the Jilin Provincial Science and Technology Department Program(No.20200801009GH).
文摘For the rational design of metal catalyst in olefin polymerization catalysis,various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center,among which the"sandwich"type turned out to be an eficient category in achieving high molecular weight polyolefin.In the a-dimine system,the"sandwich"type catalysts were built using the typical 8-aryl-naphthyI framework.In this contribution,by introducing the rotationally restrained benzosuberyl substituent into the ortho-position of N-aryl rings,a new class of "sandwich-like"a-diimine nickel catalysts was constructed and fully identified.The rotationally restrained benzosuberyl substituents played a"sandwich-like"function by capping the nickel center from two axial sites.Compared to the nickel catalyst Ni1 bearing freely rotated benzhydryl substituent,Ni2 featuring benzosubery|substituent enabled the increase(8 times)of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene.By further increasing the steric bulk of another ortho-site of the N-aryl ring,the polymer molecular weight even reached an ultrahigh level of 833 kDa(Mw=1857 kDa)using the optimized Ni3.Notably,these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate,with Ni3 giving the highest copolymer molecular weight(88 kDa)and the highest incorporation of comonmer(2.0 mol1%),along with high activity of up to 10^(5)g·mol^(-1)·h^(-1).
基金financial support by the National Natural Science Foundation of China(Nos.21234006 and U1510124)
文摘Cyclic olefin polymers(COPs) with high glass transition temperature, high transparency(higher than 80%) in the visible light range, excellent thermal stability and outstanding mechanical properties have been synthesized by effective ring opening metathesis polymerization(ROMP) of exo-1,4,4 a,9,9 a,10-hexahydro-9,10(1′,2′)-benzeno-l,4-methanoanthracene(HBM) and dicyclopentadiene(DCPD) or norbornene(NBE) using WCl6/i-Bu3Al/ethanol/1-hexene catalyst system, followed by hydrogenation of double bonds. 1-Hexene acted as a molecular weight controller in the polymerization reaction, tuning the number-average molecular weight(Mn) of P-HBM from 5.8 × 10^4 to 41.1 × 10^4. The monomer composition and thermal properties of the copolymers were characterized by nuclear magnetic resonance(NMR), differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). The saturated polymers exhibited high decomposition temperatures(Td) around 340 ℃ and glass transition temperatures(Tg) in the range from 117.5 ℃ to 219.7 ℃. What is more, tensile tests indicated that the mechanical properties of the COPs could be effectively tuned in a wide range by introducing varying amount of small cyclic olefin such as DCPD or NBE.
基金supported by the National Natural Science Foundation of China (20972025)the China National Petroleum Corporation (CNPC)Innovation Foundation (2010D-5006-0504)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,Heilongjiang Province(41417837-8-08016)Scientific Research Foundation for Overseas Chinese Scholars,Department of education of Heilongjiang Province(1154H14)
文摘Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.
基金financially supported by the Fundamental Research Funds for the Central Universities (WK2060200025)Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2016-06-01)Yixing Taodu Ying Cai Program
文摘Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.
基金This work was supported by the National Natural Science Foundation of China
文摘In this paper, highly active Ziegler-Natta catalysts of MgCl_2 supported TiCl_4 for synthesis ofpolyolefins, using di-n-butyl phthalate (DNBP) as internal donor and diphenyl dimethoxyl silane(DPDMS) as external donor, have been prepared. The conditions controlling the treatment ofsupport were studied. The interactions of various components present in the catalysts and theirinfluences on catalytic performance were investigated. It is found that by using DNBP and DPDMSas internal and external donors together the polymer products with higher isotactic index can beobtained. Plausible structure model and mechanism were proposed.