Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with...Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with small interfering RNA oligonucleotides and cytotoxicity of cetyltrimethyl ammonium bromide (CTAB)-coated single-walled carbon nanotubes (SWNTs) were studied. The field emission scanning electron microscopy and transmission electron microscopy results show that a SWNT suspension in CTAB solution was well-dispersed and stable. CTAB is the cross-linker between SWNTs and oligonucleotides. The CTAB-coated SWNTs have less cytotoxicity to human umbilical vein endothelial cells than single SWNTs and the cytotoxicity of CTAB-coated SWNTs depended on the concentration of CTAB-coated SWNTs.展开更多
PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different patho...PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.展开更多
AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of dir...AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of direct sequencing of PCR amplified products, a 16-mer phosphorothioate analogue of the antisense oligonucleotide (PS-ASOn) directed against the HBV U5-like region was synthesized and then linked with one live-targeting ligand, the galactosylated poly-L-lysine. Their effect on the expression of HBV gene was observed using the 2.2.15 cells.RESULTS HBV DNA in the 2.2.15 cells was from HBV with surface antigen subtype ayw1 by sequencing so that antisense oligonucleotides could bind specifically to the target sequence through base piring. Under the same experimental conditions, the inhibitory rates of PS-ASON to HBsAg and HBeAg were 70% and 58% at a concentration of 10μmol/L, while by ligand-PS-ASON they were 96% and 82%, the amount of HBV DNA in cultured supernatant and cells was reduced significantly. An unrelated sequence oligonucleotide showed no effectiveness. All the oligonucleotides had no cytotoxicity.CONCLUSION Antisense oligonucleotides complexed by the liver-targeting ligand can be targeted to cells via asialoglycoprotein receptors, resulting in supecific inhibition of HBV gene expression and replication.展开更多
Objective To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use o...Objective To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use of common NGS, such as high cost, complicated procedures, tremendous data analysis, and high background noise in clinical samples. Methods Viruses from cell culture materials or clinical specimens were identified following an improved NGS procedure: reduction of background noise by sample preprocessing, viral enrichment by barcoded oligonucleotide (random hexamer or non-ribosomal hexanucleotide) primer-based amplification, fragmentation-free library construction and sequencing of one-tube mixtures, as well as rapid data analysis using an in-house pipeline. Results NGS data demonstrated that both barcoded primer sets were useful to simultaneously capture multiple viral pathogens in cell culture materials or clinical specimens and verified that hexanucleotide primers captured as many viral sequences as hexamers did. Moreover, direct testing of clinical specimens using this improved hexanucleotide primer-based NGS approach provided further detailed genotypes of enteroviruses causing hand, foot, and mouth disease (HFMD) and identified other potential viruses or differentiated misdiagnosis events. Conclusion The improved barcoded oligonucleotide primer-based NGS approach is simplified, time saving, cost effective, and appropriate for direct identification of viral pathogens in clinical practice.展开更多
The changes in the expression of aquaporin-1 (AQP1) mRNA and protein in cultured human trabecular meshwork (HTM) cells treated with dexamethasone and transfected with antisense oligonucleotides (AS-ODN) were stu...The changes in the expression of aquaporin-1 (AQP1) mRNA and protein in cultured human trabecular meshwork (HTM) cells treated with dexamethasone and transfected with antisense oligonucleotides (AS-ODN) were studied, and the implication of AQP1 regulation in corticosteroid-glaucoma and the possibility of AS-ODN inhibiting the AQP1 expression were evaluated. The cultured HTM cells in vitro were treated with different concentrations of dexamethasone and transfected with oligonucleotides for 5 days respectively. Then, total RNA and protein of HTM cells were extracted. The changes of AQP1 mRNA and protein were demonstrated qualitatively and quantitatively by RT-PCR and Western blot. Band intensities were detected by imaging analysis. There was a parallel relationship between the results of RT-PCR and those of Western blot. The expression levels of AQP1 mRNA and protein in dexamethasone-treated groups were increased initially and decreased later as dexamethasone concentration was stepped up. In the 0.04 μg/mL and 0.4 μg/mL groups, the levels of AQP1 were higher than in control group (0 μg/mL). In the 4 μg/ mL and 40 μg/mL groups, the AQP1 expression levels were lower than in control group. AS-ODN could down-regulate the expression of AQP1 mRNA and protein in a dose-dependent manner. At 5 μg/mL, down-regulation efficiency reached the maximum. There was no statistically significant difference in the expression of AQP1 mRNA and protein between all sense oligonucleotides groups and control group. It was suggested that dexamethasone may induce the changes of the AQP1 expression in HTM cells to be involved in the occurrence of corticosteroid-glaucoma. AS-ODN can down-regulate the AQP1 expression in HTM cells to some extent.展开更多
Objective To detect the specific mutations in rpoB gene of Mycobacterium tuberculosis by oligonucleotide microarray. Methods Four wild-type and 8 mutant probes were used to detect rifampin resistant strains. Target DN...Objective To detect the specific mutations in rpoB gene of Mycobacterium tuberculosis by oligonucleotide microarray. Methods Four wild-type and 8 mutant probes were used to detect rifampin resistant strains. Target DNA of M. tuberculosis was amplified by PCR, hybridized and scanned. Direct sequencing was performed to verify the results of oligonucleotide microarray Results Of the 102 rifampin-resistant strains 98 (96.1%) had mutations in the rpoB genes. Conclusion Oligonucleotide microarray with mutation-specific probes is a reliable and useful tool for the rapid and accurate diagnosis of rifampin resistance in M. tuberculosis isolates.展开更多
AIM: To evaluate the effect of combined antisense oligonucleotides targeting midkine (MK-AS) and chemotherapeutic drugs [cisplatin(DDP), 5-fluorouracil (5-FU) and adriamycin (ADM)] on inhibition of HepG2 cell prolifer...AIM: To evaluate the effect of combined antisense oligonucleotides targeting midkine (MK-AS) and chemotherapeutic drugs [cisplatin(DDP), 5-fluorouracil (5-FU) and adriamycin (ADM)] on inhibition of HepG2 cell proliferation, and to analyze the efficacy of MK-AS used in combined ADM in in situ human hepatocellular carcinoma (HCC) model. METHODS: HepG2 cells were treated with MK-AS and/or chemotherapeutic drugs mediated by Lipofectin, and cell growth activity was determined by MTS assay. An in situ HCC model was used in this experiment. MK- AS, ADM and MK-AS + ADM were given intravenously for 20 d, respectively. The animal body weight and their tumor weight were measured to assess the effect of the combined therapy in vivo. RESULTS: Combined treatment with MK-AS reduced the IC50 of DDP, 5-FU and ADM in HepG2 cells. MK-AS significantly increased the inhibition rate of DDP, 5-FU and ADM. Additionally, synergism (Q 1.15) occurred at a lower concentration of ADM, 5-FU and DDP with combined MK-AS. Combined treatment with MK-AS and ADM resulted in the more growth inhibition on in situ human HCC model compared with treatment with chemotherapeutic drugs alone. CONCLUSION: MK-AS increases the chemosensitivity in HepG2 cells and in situ human HCC model, and thecombination of MK-AS and ADM has a much better in vitro and in vivo synergism.展开更多
AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer ...AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers can abrogate HSP70 expression in SGC-7901 cells, which may in turn induce apoptosis and inhibit cell proliferation, conversely suggesting that HSP70 is required for the proliferation and survival of human gastric cancer cells under normal conditions.展开更多
The study investigated the effects of heat shock protein 70(HSP70) antisense oligonucleotide(ASODN) on the proliferation and apoptosis of a human hepatocellular carcinoma cell line(SMMC-7721 cells) in vitro.HSP70 olig...The study investigated the effects of heat shock protein 70(HSP70) antisense oligonucleotide(ASODN) on the proliferation and apoptosis of a human hepatocellular carcinoma cell line(SMMC-7721 cells) in vitro.HSP70 oligonucleotide was transfected into SMMC-7721 cells by the mediation of SofastTM transfection reagent.Inhibition rate of SMMC-7721 cells was determined by using MTT method.Apoptosis rate and cell cycle distribution were measured by flow cytometry.Immunocytochemistry staining was used to observe the expression of HSP70,Bcl-2 and Bax.The results showed that HSP70 ASODN at various concentrations could significantly inhibit the growth of SMMC-7721 cells,and the inhibition effect peaked 48 h after transfection with 400-nmol/L HSP70 ASODN.Cytometric analysis showed the apoptotic rate was increased in a dose-and time-dependent manner in the HSP70 ASODN-treated cells.The percentage of cells in the G2/M and S phases was significantly decreased and that in the G0/G1 phase increased as the HSP70 ASODN concentration was elevated and the exposure time prolonged.Immunocytochemistry showed that treatment of SMMC-7721 cells with HSP70 ASODN resulted in decreased expressions of HSP70 and Bcl-2 proteins,and an increased expression of Bax protein.It was concluded that the HSP70 ASODN can inhibit the growth of the SMMC-7721 cells and increase cell apoptosis by down-regulating the expression of HSP70.HSP70 ASODN holds promise for the treatment of hepatocellular carcinoma.展开更多
AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybri...AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybridized by oligonucleotide microarrays.RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified.CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus , Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonudeotides to the arrays without any significant increase of complexity or cost.展开更多
The effects of suppression of CD44 by CD44-specific antisense oligonucleotide on attachment of human trabecular meshwork cells to hyaluronic acid (HA) were observed and the possible relationship between CD44 and prim...The effects of suppression of CD44 by CD44-specific antisense oligonucleotide on attachment of human trabecular meshwork cells to hyaluronic acid (HA) were observed and the possible relationship between CD44 and primary open-angle glaucoma (POAG) investigated. CD44-specific antisense oligonucleotide was delivered with cationic lipid to cultured human trabecular meshwork cells. The expression of CD44 suppressed by CD44-specific antisense oligonucleotide was detected by RT-PCR and Western blotting. The effect of CD44 suppression by specific antisense oligonucleotide on attachment of trabecular meshwork cells to HA was measured by MTT assay. Results showed that expression of CD44 was suppressed by CD44-specific antisense oligonucleotide. Antisense oligonucleotide also suppressed the adhesion of human trabecular meshwork cells to HA in a concentration dependent manner. It was concluded that attachment of human trabecular meshwork cells to HA was decreased when CD44 was suppressed by specific antisense oligonucleotide. CD44 might play a role in pathogenesis of POAG by affecting the adhesion of trabecular meshwork cells to HA.展开更多
AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed fo...AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed for detection of HBV genotypes in serum samples from HBV DNA-positive patients in Eastern China. This method is based on the principle of reverse hybridization with Cy5-labeled amplicons hybridizing to type-specific oligonucleotide probes that are immobilized on slides. The results of 80 randomly chosen sera were confirmed by direct sequencing. RESULTS: HBV genotype B, C and mixed genotype were detected in 400 serum samples, accounting for 8.3% (n = 33), 83.2% (n = 333), and 8.5% (n = 34), respectively. The evaluation of the oligonucleotide assay showed 100% concordance with the amplicon phylogenetic analysis except 9 mixed genotype infections undetected by sequencing. CONCLUSION: The study indicates that HBV genotype C and B prevail in the Eastern China. It is suggested that the oligonucleotide chip is a reliable and convenient tool for the detection of HBV genotyping.展开更多
AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomera...AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) in vitro. METHODS: ASODN of hTR and ASODN of hTERT were transfected into human colon cancer SW480 cells by liposomal transfection reagents. Telomerase activity of SW480 cells was examined using telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (PCR-ELISA). Proliferation activity of SW480 cells was tested by methyl thiazolyl tetrazolium assay. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: The telomerase activity and cell survival rate in SW480 cells transfected with 0.2 μmol/L of ASODN of hTR or ASODN of hTERT for 24-72 h were significantly decreased in a time-dependent manner compared with those after treatment with sense oligonucleotides and untreated (telomerase activity: 24 h, 73%, 74% vs99%, 98%; 48 h, 61%, 55% vs98%, 99%; 72 h, 41%, 37% vs 99%, 97%; P<0.01; cell survival rate: 24 h, 88%, 86% vs594%, 98%; 48 h, 49%, 47% vs94%, 97%; 72 h, 44%, 42% vs92%, 96%; P<0.01). Moreover, the telomerase activity and the cell survival rate in SW480 cells treated by the combination of telomerase anti-hTR and anti-hTERT were more significantly suppressed than single anti-hTR or anti-hTERT (telomerase activity: 24 h, 59% vs 73%, 74%; 48 h, 43% vs61%, 55%; 72 h, 18% vs41%, 37%; P<0.01; cell survival rate: 24 h, 64% vs88%, 86%; 48 h, 37% vs49%, 47%; 72 h, 25% vs44%, 42%; P<0.01). Meanwhile, the apoptosis rates in the combination group were markedly increased compared with those in the single group (24 h, 18.0% vs7.2%, 7.4%; 48 h, 23.0% vs13.0%, 14.0%; 72 h, 28.6% vs 13.2%, 13.75; P<0.01). Cells in combination group were arrested at G0/G1 phase. CONCLUSION: Telomerase anti-hRT and anti-hTERT suppress telomerase activity, and inhibit growth of human colon cancer cells probably via induction of apoptosis and retardation of cell cycle. Additionally, combined use of telomerase ASODNs targeting both hTR and hTERT yields synergistic action selective for human colon cancer.展开更多
Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by lipos...Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by ^3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group. Expression ofPCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM. Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μmol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P〈0.05 and P〈0.01, repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.展开更多
AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) and in situ human hepatocellular carcinoma (HCC). METHODS: An in situ human he...AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) and in situ human hepatocellular carcinoma (HCC). METHODS: An in situ human hepatocellular carcinoma (HCC) model and CAM assay were used in this experiment. The effect of MK-AS on angiogenesis was evaluated by cell proliferation assay and hematoxylin- eosin (HE) staining. RESULTS: MK-AS significantly inhibited human umbilical vein endothelial cells (HUVEC) and in situ human HCC growth. At the same time, MK-AS suppressed the angiogenesis both in human hepatocellular carcinoma cell line (HEPG2)-induced CAM and in situ human HCC tissues. CONCLUSION: MK-AS is an effective antiangiogenesis agent in vivo.展开更多
Biofilm formation is responsible for numerous chronic infections and represents a serious health challenge.Bacteria and the extracellular polysaccharides(EPS)cause biofilms to become adherent,toxic,resistant to antibi...Biofilm formation is responsible for numerous chronic infections and represents a serious health challenge.Bacteria and the extracellular polysaccharides(EPS)cause biofilms to become adherent,toxic,resistant to antibiotics,and ultimately difficult to remove.Inhibition of EPS synthesis can prevent the formation of bacterial biofilms,reduce their robustness,and promote removal.Here,we have developed a framework nucleic acid delivery system with a tetrahedral configuration.It can easily access bacterial cells and functions by delivering antisense oligonucleotides that target specific genes.We designed antisense oligonucleotide sequences with multiple targets based on conserved regions of the VicK protein-binding site.Once delivered to bacterial cells,they significantly decreased EPS synthesis and biofilm thickness.Compared to existing approaches,this system is highly efficacious because it simultaneously reduces the expression of all targeted genes(gtfBCD,gbpB,ftf).We demonstrate a novel nucleic acid-based nanomaterial with multi-targeted inhibition that has great potential for the treatment of chronic infections caused by biofilms.展开更多
Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cell...Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cells. The effect of the antisense oligonucleotide on tumor growth in vitro and in vivo was evaluated by the growth rate suppression of A549 cells and subcutaneous implanted tumor in nude mice, and the effect on tumorigenicity was evaluated by the expression inhibition of angiogenic factors, the microvessel density (MVD)and vascular endothelial growth factor (VEGF) protein expression which were detected by immohistochemistry and western blot respectively. This study revealed that in vitro the growth rate of antisense oligonucleotide group was significantly decreased as compared with that of control group, sense oligonucleotide group and false-sense oligonucleotide group; in vivo the weight of implanted tumors in nude mice of antisense oligonucleotide group was 1.51±0.40 g, which was significantly lower than that of control group (2.79±0.33 g), sense oligonucleotide group (2.81±0.45g) and false-sense oligonucleotide group (2.89±0.39 g) and the inhibitory rate was 47 %. Both MVD and VEGF protein expression were significantly inhibited in antisense oligonucleotide group compared with those in other groups. These results indicated that antisense oligonucleotide of HIF-1α could inhibit lung cancer cells A549 growth in vitro and in vivo, and the mechanism may be due to the inhibition of vascular growth and VEGF protein expression.展开更多
AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression p...AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression profile of intrahepatic CCC in comparison to corresponding non- malignant liver tissue. To validate the expression values of the most overexpressed genes, RT-PCR experiments were performed. RESULTS: Five hundred and fifty-two statistically differentially expressed genes/ESTs (221 probes significantly up-regulated, 331 probes down-regulated; P < 0.05; fold change > 2; ≥ 70%) were identified. Using these data and two-dimensional cluster analysis,a specific gene expression profile was obtained allowing fast and reproducible differentiation of CCC, which was confirmed by supervised neuronal network modelling. The most consistently overexpressed gene (median fold change 33.5, significantly overexpressed in 100%) encoded osteopontin. Furthermore, an association of various genes with the histopathological grading could be demonstrated. CONCLUSION: A highly specific gene expression profile for intrahepatic CCC was identified, allowing for its fast and reproducible discrimination against non- malignant liver tissue and other liver masses. The most overexpressed gene in intrahepatic CCC was the gene encoding osteopontin. These data may lead to a better understanding of human cholangiocarcinogenesis.展开更多
The aim of this study was to develop and validate an oligonucleotide suspension array for rapid identification of 15 bacterial species responsible for bacteremia, particularly prevalent in Chinese hospitals. The multi...The aim of this study was to develop and validate an oligonucleotide suspension array for rapid identification of 15 bacterial species responsible for bacteremia, particularly prevalent in Chinese hospitals. The multiplexed array, based on the QIAGEN LiquiChip Workstation, included 15 oligonucleotide probes which were covalently bound to different bead sets. PCR amplicons of a variable region of the bacterial 23S rRNA genes were hybridized to the bead-bound probes. Thirty-eight strains belonging to 15 species were correctly identified on the basis of their corresponding species-specific hybridization profiles. The results show that the suspension array, in a single assay, can differentiate isolates over a wide range of strains and species, and suggest the potential utility of suspension array system to clinical laboratory diagnosis.展开更多
The transfection efficiency of oligonucleotide and plasmid to the HL-60 cell line with lipofectaminePLUS was compared through observing the transfection rate and the expression duration of exogenous gene in the targe...The transfection efficiency of oligonucleotide and plasmid to the HL-60 cell line with lipofectaminePLUS was compared through observing the transfection rate and the expression duration of exogenous gene in the target cells. The results showed that the transfection rate of oligonucleotide to the HL-60 was about 90 %—95 % and it had no obvious attenuation within 84 h. However, the plasmid transfection rate was only 5 %—25 % and it was decreased significantly within 60 h. It was suggested that the transfection of oligonucleotide with liposomes was better than that of plasmid.展开更多
基金Project (30770838) supported by the National Natural Science Foundation of China Project (2008WK2003) supported by Hunan Science and Technology Foundation, China+1 种基金 Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation, China Project (200806) supported by Opening Foundation of State Key Laboratory of Powder Metallurgy, Central South University, China
文摘Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with small interfering RNA oligonucleotides and cytotoxicity of cetyltrimethyl ammonium bromide (CTAB)-coated single-walled carbon nanotubes (SWNTs) were studied. The field emission scanning electron microscopy and transmission electron microscopy results show that a SWNT suspension in CTAB solution was well-dispersed and stable. CTAB is the cross-linker between SWNTs and oligonucleotides. The CTAB-coated SWNTs have less cytotoxicity to human umbilical vein endothelial cells than single SWNTs and the cytotoxicity of CTAB-coated SWNTs depended on the concentration of CTAB-coated SWNTs.
基金supported by Telethon Italy award GGP15225(to RC and GM)Italian Ministry of Health award RF-2016-02362950(to RC and CZ)+1 种基金the CJD Foundation USA(to RC)the Associazione Italiana Encefalopatie da Prioni(AIEnP)(to RC).
文摘PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.
文摘AIM To study the specific inhibition of HBV gene expression by liver-targeting antisense oligonucleotide (ASON) directed against pre-c and c regious in a sequence-specific manner.METHODS According to the result of direct sequencing of PCR amplified products, a 16-mer phosphorothioate analogue of the antisense oligonucleotide (PS-ASOn) directed against the HBV U5-like region was synthesized and then linked with one live-targeting ligand, the galactosylated poly-L-lysine. Their effect on the expression of HBV gene was observed using the 2.2.15 cells.RESULTS HBV DNA in the 2.2.15 cells was from HBV with surface antigen subtype ayw1 by sequencing so that antisense oligonucleotides could bind specifically to the target sequence through base piring. Under the same experimental conditions, the inhibitory rates of PS-ASON to HBsAg and HBeAg were 70% and 58% at a concentration of 10μmol/L, while by ligand-PS-ASON they were 96% and 82%, the amount of HBV DNA in cultured supernatant and cells was reduced significantly. An unrelated sequence oligonucleotide showed no effectiveness. All the oligonucleotides had no cytotoxicity.CONCLUSION Antisense oligonucleotides complexed by the liver-targeting ligand can be targeted to cells via asialoglycoprotein receptors, resulting in supecific inhibition of HBV gene expression and replication.
基金supported by the China Mega-Project for Infectious Disease(2016ZX10004-101,2016ZX10004-215)Beijing Municipal Science&Technology Commission Project(D151100002115003)Guangzhou Municipal Science&Technology Commission Project(2015B2150820)
文摘Objective To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use of common NGS, such as high cost, complicated procedures, tremendous data analysis, and high background noise in clinical samples. Methods Viruses from cell culture materials or clinical specimens were identified following an improved NGS procedure: reduction of background noise by sample preprocessing, viral enrichment by barcoded oligonucleotide (random hexamer or non-ribosomal hexanucleotide) primer-based amplification, fragmentation-free library construction and sequencing of one-tube mixtures, as well as rapid data analysis using an in-house pipeline. Results NGS data demonstrated that both barcoded primer sets were useful to simultaneously capture multiple viral pathogens in cell culture materials or clinical specimens and verified that hexanucleotide primers captured as many viral sequences as hexamers did. Moreover, direct testing of clinical specimens using this improved hexanucleotide primer-based NGS approach provided further detailed genotypes of enteroviruses causing hand, foot, and mouth disease (HFMD) and identified other potential viruses or differentiated misdiagnosis events. Conclusion The improved barcoded oligonucleotide primer-based NGS approach is simplified, time saving, cost effective, and appropriate for direct identification of viral pathogens in clinical practice.
文摘The changes in the expression of aquaporin-1 (AQP1) mRNA and protein in cultured human trabecular meshwork (HTM) cells treated with dexamethasone and transfected with antisense oligonucleotides (AS-ODN) were studied, and the implication of AQP1 regulation in corticosteroid-glaucoma and the possibility of AS-ODN inhibiting the AQP1 expression were evaluated. The cultured HTM cells in vitro were treated with different concentrations of dexamethasone and transfected with oligonucleotides for 5 days respectively. Then, total RNA and protein of HTM cells were extracted. The changes of AQP1 mRNA and protein were demonstrated qualitatively and quantitatively by RT-PCR and Western blot. Band intensities were detected by imaging analysis. There was a parallel relationship between the results of RT-PCR and those of Western blot. The expression levels of AQP1 mRNA and protein in dexamethasone-treated groups were increased initially and decreased later as dexamethasone concentration was stepped up. In the 0.04 μg/mL and 0.4 μg/mL groups, the levels of AQP1 were higher than in control group (0 μg/mL). In the 4 μg/ mL and 40 μg/mL groups, the AQP1 expression levels were lower than in control group. AS-ODN could down-regulate the expression of AQP1 mRNA and protein in a dose-dependent manner. At 5 μg/mL, down-regulation efficiency reached the maximum. There was no statistically significant difference in the expression of AQP1 mRNA and protein between all sense oligonucleotides groups and control group. It was suggested that dexamethasone may induce the changes of the AQP1 expression in HTM cells to be involved in the occurrence of corticosteroid-glaucoma. AS-ODN can down-regulate the AQP1 expression in HTM cells to some extent.
基金supported by the grant from the National Natural Science Foundation of China (No. 30400018)
文摘Objective To detect the specific mutations in rpoB gene of Mycobacterium tuberculosis by oligonucleotide microarray. Methods Four wild-type and 8 mutant probes were used to detect rifampin resistant strains. Target DNA of M. tuberculosis was amplified by PCR, hybridized and scanned. Direct sequencing was performed to verify the results of oligonucleotide microarray Results Of the 102 rifampin-resistant strains 98 (96.1%) had mutations in the rpoB genes. Conclusion Oligonucleotide microarray with mutation-specific probes is a reliable and useful tool for the rapid and accurate diagnosis of rifampin resistance in M. tuberculosis isolates.
基金Supported by grants from the Zhejiang Province Medicine and Health Research Fund, No. 2003A077Huzhou Natural Science Foundation, No. 2004SZX07-11, China
文摘AIM: To evaluate the effect of combined antisense oligonucleotides targeting midkine (MK-AS) and chemotherapeutic drugs [cisplatin(DDP), 5-fluorouracil (5-FU) and adriamycin (ADM)] on inhibition of HepG2 cell proliferation, and to analyze the efficacy of MK-AS used in combined ADM in in situ human hepatocellular carcinoma (HCC) model. METHODS: HepG2 cells were treated with MK-AS and/or chemotherapeutic drugs mediated by Lipofectin, and cell growth activity was determined by MTS assay. An in situ HCC model was used in this experiment. MK- AS, ADM and MK-AS + ADM were given intravenously for 20 d, respectively. The animal body weight and their tumor weight were measured to assess the effect of the combined therapy in vivo. RESULTS: Combined treatment with MK-AS reduced the IC50 of DDP, 5-FU and ADM in HepG2 cells. MK-AS significantly increased the inhibition rate of DDP, 5-FU and ADM. Additionally, synergism (Q 1.15) occurred at a lower concentration of ADM, 5-FU and DDP with combined MK-AS. Combined treatment with MK-AS and ADM resulted in the more growth inhibition on in situ human HCC model compared with treatment with chemotherapeutic drugs alone. CONCLUSION: MK-AS increases the chemosensitivity in HepG2 cells and in situ human HCC model, and thecombination of MK-AS and ADM has a much better in vitro and in vivo synergism.
文摘AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers can abrogate HSP70 expression in SGC-7901 cells, which may in turn induce apoptosis and inhibit cell proliferation, conversely suggesting that HSP70 is required for the proliferation and survival of human gastric cancer cells under normal conditions.
文摘The study investigated the effects of heat shock protein 70(HSP70) antisense oligonucleotide(ASODN) on the proliferation and apoptosis of a human hepatocellular carcinoma cell line(SMMC-7721 cells) in vitro.HSP70 oligonucleotide was transfected into SMMC-7721 cells by the mediation of SofastTM transfection reagent.Inhibition rate of SMMC-7721 cells was determined by using MTT method.Apoptosis rate and cell cycle distribution were measured by flow cytometry.Immunocytochemistry staining was used to observe the expression of HSP70,Bcl-2 and Bax.The results showed that HSP70 ASODN at various concentrations could significantly inhibit the growth of SMMC-7721 cells,and the inhibition effect peaked 48 h after transfection with 400-nmol/L HSP70 ASODN.Cytometric analysis showed the apoptotic rate was increased in a dose-and time-dependent manner in the HSP70 ASODN-treated cells.The percentage of cells in the G2/M and S phases was significantly decreased and that in the G0/G1 phase increased as the HSP70 ASODN concentration was elevated and the exposure time prolonged.Immunocytochemistry showed that treatment of SMMC-7721 cells with HSP70 ASODN resulted in decreased expressions of HSP70 and Bcl-2 proteins,and an increased expression of Bax protein.It was concluded that the HSP70 ASODN can inhibit the growth of the SMMC-7721 cells and increase cell apoptosis by down-regulating the expression of HSP70.HSP70 ASODN holds promise for the treatment of hepatocellular carcinoma.
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program), No.2002AA2Z2011
文摘AIM: To detect the common intestinal pathogenic bacteria quickly and accurately.METHODS: A rapid (〈3 h) experimental procedure was set up based upon the gene chip technology, Target genes were amplified and hybridized by oligonucleotide microarrays.RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified.CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus , Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonudeotides to the arrays without any significant increase of complexity or cost.
文摘The effects of suppression of CD44 by CD44-specific antisense oligonucleotide on attachment of human trabecular meshwork cells to hyaluronic acid (HA) were observed and the possible relationship between CD44 and primary open-angle glaucoma (POAG) investigated. CD44-specific antisense oligonucleotide was delivered with cationic lipid to cultured human trabecular meshwork cells. The expression of CD44 suppressed by CD44-specific antisense oligonucleotide was detected by RT-PCR and Western blotting. The effect of CD44 suppression by specific antisense oligonucleotide on attachment of trabecular meshwork cells to HA was measured by MTT assay. Results showed that expression of CD44 was suppressed by CD44-specific antisense oligonucleotide. Antisense oligonucleotide also suppressed the adhesion of human trabecular meshwork cells to HA in a concentration dependent manner. It was concluded that attachment of human trabecular meshwork cells to HA was decreased when CD44 was suppressed by specific antisense oligonucleotide. CD44 might play a role in pathogenesis of POAG by affecting the adhesion of trabecular meshwork cells to HA.
文摘AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed for detection of HBV genotypes in serum samples from HBV DNA-positive patients in Eastern China. This method is based on the principle of reverse hybridization with Cy5-labeled amplicons hybridizing to type-specific oligonucleotide probes that are immobilized on slides. The results of 80 randomly chosen sera were confirmed by direct sequencing. RESULTS: HBV genotype B, C and mixed genotype were detected in 400 serum samples, accounting for 8.3% (n = 33), 83.2% (n = 333), and 8.5% (n = 34), respectively. The evaluation of the oligonucleotide assay showed 100% concordance with the amplicon phylogenetic analysis except 9 mixed genotype infections undetected by sequencing. CONCLUSION: The study indicates that HBV genotype C and B prevail in the Eastern China. It is suggested that the oligonucleotide chip is a reliable and convenient tool for the detection of HBV genotyping.
基金Supported by the Science and Research Foundation of Bureau of Health, Hunan Province, China, No. Y02-083
文摘AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) in vitro. METHODS: ASODN of hTR and ASODN of hTERT were transfected into human colon cancer SW480 cells by liposomal transfection reagents. Telomerase activity of SW480 cells was examined using telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (PCR-ELISA). Proliferation activity of SW480 cells was tested by methyl thiazolyl tetrazolium assay. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: The telomerase activity and cell survival rate in SW480 cells transfected with 0.2 μmol/L of ASODN of hTR or ASODN of hTERT for 24-72 h were significantly decreased in a time-dependent manner compared with those after treatment with sense oligonucleotides and untreated (telomerase activity: 24 h, 73%, 74% vs99%, 98%; 48 h, 61%, 55% vs98%, 99%; 72 h, 41%, 37% vs 99%, 97%; P<0.01; cell survival rate: 24 h, 88%, 86% vs594%, 98%; 48 h, 49%, 47% vs94%, 97%; 72 h, 44%, 42% vs92%, 96%; P<0.01). Moreover, the telomerase activity and the cell survival rate in SW480 cells treated by the combination of telomerase anti-hTR and anti-hTERT were more significantly suppressed than single anti-hTR or anti-hTERT (telomerase activity: 24 h, 59% vs 73%, 74%; 48 h, 43% vs61%, 55%; 72 h, 18% vs41%, 37%; P<0.01; cell survival rate: 24 h, 64% vs88%, 86%; 48 h, 37% vs49%, 47%; 72 h, 25% vs44%, 42%; P<0.01). Meanwhile, the apoptosis rates in the combination group were markedly increased compared with those in the single group (24 h, 18.0% vs7.2%, 7.4%; 48 h, 23.0% vs13.0%, 14.0%; 72 h, 28.6% vs 13.2%, 13.75; P<0.01). Cells in combination group were arrested at G0/G1 phase. CONCLUSION: Telomerase anti-hRT and anti-hTERT suppress telomerase activity, and inhibit growth of human colon cancer cells probably via induction of apoptosis and retardation of cell cycle. Additionally, combined use of telomerase ASODNs targeting both hTR and hTERT yields synergistic action selective for human colon cancer.
文摘Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by ^3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group. Expression ofPCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM. Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μmol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P〈0.05 and P〈0.01, repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.
基金grants from Medical and Sanitary Research Foundation of Zhejiang Province, (No. 2003A077)Huzhou Natural Science Foundation, (No. 2004SZX07-11)
文摘AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) and in situ human hepatocellular carcinoma (HCC). METHODS: An in situ human hepatocellular carcinoma (HCC) model and CAM assay were used in this experiment. The effect of MK-AS on angiogenesis was evaluated by cell proliferation assay and hematoxylin- eosin (HE) staining. RESULTS: MK-AS significantly inhibited human umbilical vein endothelial cells (HUVEC) and in situ human HCC growth. At the same time, MK-AS suppressed the angiogenesis both in human hepatocellular carcinoma cell line (HEPG2)-induced CAM and in situ human HCC tissues. CONCLUSION: MK-AS is an effective antiangiogenesis agent in vivo.
基金the National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(81970916,81671031).
文摘Biofilm formation is responsible for numerous chronic infections and represents a serious health challenge.Bacteria and the extracellular polysaccharides(EPS)cause biofilms to become adherent,toxic,resistant to antibiotics,and ultimately difficult to remove.Inhibition of EPS synthesis can prevent the formation of bacterial biofilms,reduce their robustness,and promote removal.Here,we have developed a framework nucleic acid delivery system with a tetrahedral configuration.It can easily access bacterial cells and functions by delivering antisense oligonucleotides that target specific genes.We designed antisense oligonucleotide sequences with multiple targets based on conserved regions of the VicK protein-binding site.Once delivered to bacterial cells,they significantly decreased EPS synthesis and biofilm thickness.Compared to existing approaches,this system is highly efficacious because it simultaneously reduces the expression of all targeted genes(gtfBCD,gbpB,ftf).We demonstrate a novel nucleic acid-based nanomaterial with multi-targeted inhibition that has great potential for the treatment of chronic infections caused by biofilms.
基金This project was supported by a grant from the National Natural Science Foundation of China (No. 30500224)
文摘Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cells. The effect of the antisense oligonucleotide on tumor growth in vitro and in vivo was evaluated by the growth rate suppression of A549 cells and subcutaneous implanted tumor in nude mice, and the effect on tumorigenicity was evaluated by the expression inhibition of angiogenic factors, the microvessel density (MVD)and vascular endothelial growth factor (VEGF) protein expression which were detected by immohistochemistry and western blot respectively. This study revealed that in vitro the growth rate of antisense oligonucleotide group was significantly decreased as compared with that of control group, sense oligonucleotide group and false-sense oligonucleotide group; in vivo the weight of implanted tumors in nude mice of antisense oligonucleotide group was 1.51±0.40 g, which was significantly lower than that of control group (2.79±0.33 g), sense oligonucleotide group (2.81±0.45g) and false-sense oligonucleotide group (2.89±0.39 g) and the inhibitory rate was 47 %. Both MVD and VEGF protein expression were significantly inhibited in antisense oligonucleotide group compared with those in other groups. These results indicated that antisense oligonucleotide of HIF-1α could inhibit lung cancer cells A549 growth in vitro and in vivo, and the mechanism may be due to the inhibition of vascular growth and VEGF protein expression.
基金Supported by The fortüne-program of the University of Tuebingen, No. F1281305
文摘AIM: To investigate the molecular pathways involved in human cholangiocarcinogenesis by gene expression profiling. METHODS: Oligonucleotide arrays (Affymetrix U133A) were used to establish a specific gene expression profile of intrahepatic CCC in comparison to corresponding non- malignant liver tissue. To validate the expression values of the most overexpressed genes, RT-PCR experiments were performed. RESULTS: Five hundred and fifty-two statistically differentially expressed genes/ESTs (221 probes significantly up-regulated, 331 probes down-regulated; P < 0.05; fold change > 2; ≥ 70%) were identified. Using these data and two-dimensional cluster analysis,a specific gene expression profile was obtained allowing fast and reproducible differentiation of CCC, which was confirmed by supervised neuronal network modelling. The most consistently overexpressed gene (median fold change 33.5, significantly overexpressed in 100%) encoded osteopontin. Furthermore, an association of various genes with the histopathological grading could be demonstrated. CONCLUSION: A highly specific gene expression profile for intrahepatic CCC was identified, allowing for its fast and reproducible discrimination against non- malignant liver tissue and other liver masses. The most overexpressed gene in intrahepatic CCC was the gene encoding osteopontin. These data may lead to a better understanding of human cholangiocarcinogenesis.
基金Project (Nos. 2003C13015 and 021103128) supported by Scienceand Technology Department of Zhejiang Province, China
文摘The aim of this study was to develop and validate an oligonucleotide suspension array for rapid identification of 15 bacterial species responsible for bacteremia, particularly prevalent in Chinese hospitals. The multiplexed array, based on the QIAGEN LiquiChip Workstation, included 15 oligonucleotide probes which were covalently bound to different bead sets. PCR amplicons of a variable region of the bacterial 23S rRNA genes were hybridized to the bead-bound probes. Thirty-eight strains belonging to 15 species were correctly identified on the basis of their corresponding species-specific hybridization profiles. The results show that the suspension array, in a single assay, can differentiate isolates over a wide range of strains and species, and suggest the potential utility of suspension array system to clinical laboratory diagnosis.
基金This project was supported by a grant from National Natu ral Sciences Foundation of China (No. 39800149).
文摘The transfection efficiency of oligonucleotide and plasmid to the HL-60 cell line with lipofectaminePLUS was compared through observing the transfection rate and the expression duration of exogenous gene in the target cells. The results showed that the transfection rate of oligonucleotide to the HL-60 was about 90 %—95 % and it had no obvious attenuation within 84 h. However, the plasmid transfection rate was only 5 %—25 % and it was decreased significantly within 60 h. It was suggested that the transfection of oligonucleotide with liposomes was better than that of plasmid.