针对现有机载LiDAR(light detection and ranging)点云滤波方法在地形起伏剧烈的林区适用性不足的问题,提出一种多分辨率层次布料模拟滤波方法。首先,通过多尺度形态学开运算选择大量种子地面点;然后,基于种子地面点,使用布料模拟法由...针对现有机载LiDAR(light detection and ranging)点云滤波方法在地形起伏剧烈的林区适用性不足的问题,提出一种多分辨率层次布料模拟滤波方法。首先,通过多尺度形态学开运算选择大量种子地面点;然后,基于种子地面点,使用布料模拟法由低至高逐层构建参考地形,以快速获取高分辨率参考地形;最后,基于点至参考地形的高差区分地面点和非地面点。利用国际摄影测量和遥感学会提供的数据集和参考方法,评估该方法性能。利用在中国、美国多个代表性林区的点云数据,评估该方法的可推广性。结果表明,该方法的Kappa系数和运行时间是83.72%和34.11 s,精度和效率较经典布料模拟滤波方法提高10.49%和52.17%。相比8种参考方法,该方法能够获得更高精度,并且具有稳定的可推广性。展开更多
文摘针对现有机载LiDAR(light detection and ranging)点云滤波方法在地形起伏剧烈的林区适用性不足的问题,提出一种多分辨率层次布料模拟滤波方法。首先,通过多尺度形态学开运算选择大量种子地面点;然后,基于种子地面点,使用布料模拟法由低至高逐层构建参考地形,以快速获取高分辨率参考地形;最后,基于点至参考地形的高差区分地面点和非地面点。利用国际摄影测量和遥感学会提供的数据集和参考方法,评估该方法性能。利用在中国、美国多个代表性林区的点云数据,评估该方法的可推广性。结果表明,该方法的Kappa系数和运行时间是83.72%和34.11 s,精度和效率较经典布料模拟滤波方法提高10.49%和52.17%。相比8种参考方法,该方法能够获得更高精度,并且具有稳定的可推广性。