Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in...Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth.展开更多
In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the ele...In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the electron transport layer(ETL)not only presents an ameliorative work function,but also forms the cratered surface with increased ohmic contact area,revealing suppressed charge recombination and enhanced charge extraction in devices.Particularly,P-ZnO-based OSCs show improved light trapping in the active layer compared with ZnO-based ones.The universality of P-ZnO serving as ETL for efficient OSCs is verified on three photovoltaic systems of PBDB-T/DTPPSe-2 F,PM6/Y6,and PTB7-Th/PC_(71)BM.The enhancements of 8%in power conversion efficiency(PCE)can be achieved in the state-of-the-art OSCs based on PBDB-T/DTPPSe-2F,PM6/Y6,and PTB7-Th/PC_(71)BM,delivering PCEs of 14.78%,16.57%,and 9.85%,respectively.Furthermore,a promising PCE of14.13%under air-processed condition can be achieved for PZnO/PBDB-T/DTPPSe-2F-based OSC,which is among the highest efficiencies reported for air-processed OSCs in the literature.And the P-ZnO/PBDB-T/DTPPSe-2F-based device also presents superior long-term storage stability whether in nitrogen or ambient air-condition without encapsulation,which can maintain over 85%of its initial efficiency.Our results demonstrate the great potential of the porous hybrid PZnO as ETL for constructing high-performance and air-stable OSCs.展开更多
Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis rat...Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.展开更多
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (Nos. 51175220, and 51290292), the National Basic Research of China (No. 2007CB616913), the Science and Technology Development Project of Jilin Province (No. 20111808), and the Graduate Innovation Fund of Jilin University (No. 20121085).
文摘Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth.
基金the National Natural Science Foundation of China(21905137)the Natural Science Foundation of Jiangsu Province(BK20180496)。
文摘In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the electron transport layer(ETL)not only presents an ameliorative work function,but also forms the cratered surface with increased ohmic contact area,revealing suppressed charge recombination and enhanced charge extraction in devices.Particularly,P-ZnO-based OSCs show improved light trapping in the active layer compared with ZnO-based ones.The universality of P-ZnO serving as ETL for efficient OSCs is verified on three photovoltaic systems of PBDB-T/DTPPSe-2 F,PM6/Y6,and PTB7-Th/PC_(71)BM.The enhancements of 8%in power conversion efficiency(PCE)can be achieved in the state-of-the-art OSCs based on PBDB-T/DTPPSe-2F,PM6/Y6,and PTB7-Th/PC_(71)BM,delivering PCEs of 14.78%,16.57%,and 9.85%,respectively.Furthermore,a promising PCE of14.13%under air-processed condition can be achieved for PZnO/PBDB-T/DTPPSe-2F-based OSC,which is among the highest efficiencies reported for air-processed OSCs in the literature.And the P-ZnO/PBDB-T/DTPPSe-2F-based device also presents superior long-term storage stability whether in nitrogen or ambient air-condition without encapsulation,which can maintain over 85%of its initial efficiency.Our results demonstrate the great potential of the porous hybrid PZnO as ETL for constructing high-performance and air-stable OSCs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61006050 and 51072051)the Natural Science Foundation of Beijing,China (Grant No. 2102042)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 10QG24)the National High Technology Research and Development Program ("863" Project)(Grant No. 2011AA050507)the National Basic Research Program of China("973" Project)(Grant No. 2010CB93380)
文摘Ag nanoparticles were fabricated on Si substrates by radio-frequency magnetron sputtering and thermal annealing treatments.It was found that Ag nanoparticles are ellipsoid at low annealing temperature,but the axis ratio decreases with the increase of annealing temperature,and a shape transformation from ellipsoid to sphere occurs when the temperature increases to a critical point.The experimental results showed that the surface plasmon resonances depend greatly on the nanoparticles'shape and size,which is in accordance with the theoretical calculation based on discrete dipole approximation.The results of forward-scattering efficiency(FSE) and light trapping spectrum(LTS) showed that Ag nanoparticles annealed at 400°C could strongly enhance the light harvest than those annealed at 300 and 500°C,and that the LTS peak intensity of the former is 1.7 and 1.5 times stronger than those of the later two samples,respectively.The conclusions obtained in this paper showed that Ag ellipsoid nanoparticles with appropriate size is more favorable for enhancing the light trapping.