Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It...Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.展开更多
为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取...为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取评论文本特征向量,解决静态词向量无法表示多义词的问题;多层次特征协同网络结合双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)和多层次卷积神经网络(Multilevel Convolutional Neural Network,MCNN)模块,全面捕捉局部和上下文语义特征;软注意力用来衡量分类特征贡献的大小,赋予关键特征更高权重。基于网易云评论文本数据集进行实验,结果表明,MacBERTMFCN模型F1值高达95.56%,能有效地提升文本情感分类准确率。展开更多
针对现有循环和卷积深度模型特征抽取不全面,以及循环模型训练速度慢等问题,本文提出了结合ALBERT和BiFASRU-AT的情感分析模型.借助ALBERT(A Lite BERT)预训练模型赋予词上下文动态语义,解决一词多义问题;再采用双向内置快速注意力简单...针对现有循环和卷积深度模型特征抽取不全面,以及循环模型训练速度慢等问题,本文提出了结合ALBERT和BiFASRU-AT的情感分析模型.借助ALBERT(A Lite BERT)预训练模型赋予词上下文动态语义,解决一词多义问题;再采用双向内置快速注意力简单循环单元(Bidirectional Build-in Fast Attention Simple Recurrent Unit,BiFASRU)对上下文进行建模,同时内置快速注意力机制可以捕获词与词之间的依赖关系,得到更为全面的高维情感特征;最后通过注意力机制对情感分析贡献大的词分配更高权重,经分类器得到结果.实验采用中文酒店评论和豆瓣评论数据集,结果表明,ALBERT-BiFASRU-AT模型能够获得更高的F1值,且BiFASRU模型比其他循环模型训练速度更快,证明了该模型的有效性.展开更多
文摘Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.
文摘为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取评论文本特征向量,解决静态词向量无法表示多义词的问题;多层次特征协同网络结合双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)和多层次卷积神经网络(Multilevel Convolutional Neural Network,MCNN)模块,全面捕捉局部和上下文语义特征;软注意力用来衡量分类特征贡献的大小,赋予关键特征更高权重。基于网易云评论文本数据集进行实验,结果表明,MacBERTMFCN模型F1值高达95.56%,能有效地提升文本情感分类准确率。
文摘针对现有循环和卷积深度模型特征抽取不全面,以及循环模型训练速度慢等问题,本文提出了结合ALBERT和BiFASRU-AT的情感分析模型.借助ALBERT(A Lite BERT)预训练模型赋予词上下文动态语义,解决一词多义问题;再采用双向内置快速注意力简单循环单元(Bidirectional Build-in Fast Attention Simple Recurrent Unit,BiFASRU)对上下文进行建模,同时内置快速注意力机制可以捕获词与词之间的依赖关系,得到更为全面的高维情感特征;最后通过注意力机制对情感分析贡献大的词分配更高权重,经分类器得到结果.实验采用中文酒店评论和豆瓣评论数据集,结果表明,ALBERT-BiFASRU-AT模型能够获得更高的F1值,且BiFASRU模型比其他循环模型训练速度更快,证明了该模型的有效性.