Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz...This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz,using 10 minutes of observing time.The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth.The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H I 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span.This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z<1,referred to as redshift drift z(5)or the SL effect.The measured H I gas column density in this DLA system is approximately equivalent to the initial observation value,considering uncertainties of the spin temperature of a spiral host galaxy.The high signal-to-noise ratio of 57,obtained at a 10 kHz resolution,strongly supports the feasibility of using the H I 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10~(-10)per decade.展开更多
The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the...The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%.展开更多
In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was pre...In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.展开更多
Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distributio...Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype...In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.展开更多
We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A nar...We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion(ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10^-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator(AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely.The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement fun...ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P...We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking p...In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.展开更多
This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the National SKA Program of China(2022SKA0110202)the National Natural Science Foundation of China(grants No.11929301)。
文摘This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz,using 10 minutes of observing time.The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth.The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H I 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span.This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z<1,referred to as redshift drift z(5)or the SL effect.The measured H I gas column density in this DLA system is approximately equivalent to the initial observation value,considering uncertainties of the spin temperature of a spiral host galaxy.The high signal-to-noise ratio of 57,obtained at a 10 kHz resolution,strongly supports the feasibility of using the H I 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10~(-10)per decade.
文摘The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%.
文摘In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.
文摘Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.
基金Supported by Industrial Technology Development Program of China(Grant Nos.JCKY2017208C005,A0920132008)National Natural Science Foundation of China(Grant No.51575049)
文摘In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127901)the Key Project of the Chinese Academy of Sciences(Grant No.KJZD-EW-W02)
文摘We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion(ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10^-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator(AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely.The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
基金supported by research grants from the NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Programthe National Natural Science Foundation of China (Grant Nos.41276029 and 40730843)the National Basic Research Program (Grant No.2007CB816005)
文摘ABSTRACT The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent. On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2013CBA01600)the National Key Research&Development Project of China(Grant No.2016YFA0202300)+1 种基金the National Natural Science Foundation of China(Grant Nos.61474141,61674170,61335006,61390501,51325204,and 51210003)the Chinese Academy of Sciences(CAS) and Youth Innovation Promotion Association of CAS(Grant No.20150005)
文摘We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.
基金supported by the National Natural Science Foundation of China(5130712811571133)+1 种基金the National Natural Science Foundation of Hubei Province(2013CFB437)the Natural Science Foundation of School of Science(HJGSK2014G121)
文摘In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter.
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.