Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor ...Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
This paper reviews the research work done on the Reliability Analysis of Controller Area Network (CAN) based systems. During the last couple of decades, real-time researchers have extended schedulability analysis to a...This paper reviews the research work done on the Reliability Analysis of Controller Area Network (CAN) based systems. During the last couple of decades, real-time researchers have extended schedulability analysis to a mature technique which for nontrivial systems can be used to determine whether a set of tasks executing on a single CPU or in a distributed system will meet their deadlines or not [1-3]. The main focus of the real-time research community is on hard real-time systems, and the essence of analyzing such systems is to investigate if deadlines are met in a worst case scenario. Whether this worst case actually will occur during execution, or if it is likely to occur, is not normally considered. Reliability modeling, on the other hand, involves study of fault models, characterization of distribution functions of faults and development of methods and tools for composing these distributions and models in estimating an overall reliability figure for the system [4]. This paper presents the research work done on reliability analysis developed with a focus on Controller-Area-Network-based automotive systems.展开更多
The Controller Area Network (CAN) is a well established control network for automotive and automation control applications. Time-Triggered Controller Area Network (TTCAN) is a recent development which introduces a ses...The Controller Area Network (CAN) is a well established control network for automotive and automation control applications. Time-Triggered Controller Area Network (TTCAN) is a recent development which introduces a session layer,for message scheduling,to the existing CAN standard,which is a two layer standard comprising of a physical layer and a data link layer. TTCAN facilitates network communication in a time-triggered fashion,by introducing a Time Division Multiple Access style communication scheme. This allows deterministic network behavior,where maximum message latency times can be quantified and guaranteed. In order to solve the problem of determinate time latency and synchronization among several districted units in one auto panel CAN systems,this paper proposed a prototype design implementation for a shared-clock scheduler based on PIC18F458 MCU. This leads to improved CAN system performance and avoid the latency jitters and guarantee a deterministic communication pattern on the bus. The real runtime performance is satisfied.展开更多
In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between th...In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to con...Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss.展开更多
Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer...Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer from poor propagation of signals in air and consume too much energy. To address these limitations,firstly,we make the theoretical analysis to ensure ultrasonic waves could be used in BANs(UBANs). Then,we propose an error control strategy in UBANs to dynamically adjust the error control scheme and the Max-Retries based on the current channel state,which is called UECS. The UECS is based on IEEE 802.15.6 standards and considering the characteristics of ultrasonic waves in BANs. Simulation results show that UECS achieves better performance in terms of packet delivery ratio and energy consumption compared with the traditional strategies.展开更多
Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON an...Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.展开更多
In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC pr...In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.展开更多
A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and da...A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.展开更多
OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Trans...OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.展开更多
This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided in...This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.展开更多
Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and i...Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and insulation wear of the cables can cause intermittent connection(IC)faults to occur frequently in the CAN,which will affect the dynamic behavior and the safety of the system.Hence,quantitatively evaluating the performance of the CAN under the influence of IC faults is crucial to real-time health monitoring of the system.In this paper,a novel methodology is proposed for real-time quantitative evaluation of CAN availability when considering IC faults,with the system availability parameter being calculated based on the network state transition model.First,the causal relationship between IC fault and network error response is constructed,based on which the IC fault arrival rate is estimated.Second,the states of the network considering IC faults are analyzed,and the deterministic and stochastic Petri net(DSPN)model is applied to describe the transition relationship of the states.Then,the parameters of the DSPN model are determined and the availability of the system is calculated based on the probability distribution and physical meaning of markings in the DSPN model.A testbed is constructed and case studies are conducted to verify the proposed methodology under various experimental setups.Experimental results show that the estimation results obtained using the proposed method agree well with the actual values.展开更多
An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control ...An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control and the error recovery are differentiated by combined dynamic random early detection-explicit congestion notification (DRED-ECN) algorithm, and, moreover, the pertaining congestion control methods are used in TCP-ATCA to improve the throughput. By introducing the entire recovery algorithm, the unnecessary congestion window decrease is reduced, and the throughput and fairness are improved. Simulation results show that, compared with TCP-Reno, TCP-ATCA provides a better throughput performance when the link capacity is higher ( ≥600 packet/s), and roughly the same when it is lower. At the same time, TCP-ATCA also increases fairness and reduces transmission delay.展开更多
The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh...The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local ...IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.展开更多
Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data tr...Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data transfer,and data loss,affect the effectiveness of Transmission Control Protocols(TCP)on such wireless ad hoc networks.To avoid the problem,in this paper,mobility-aware zone-based routing in VANET is proposed.To achieve this con-cept,in this paper hybrid optimization algorithm is presented.The hybrid algo-rithm is a combination of Ant colony optimization(ACO)and artificial bee colony optimization(ABC).The proposed hybrid algorithm is designed for the routing process which is transmitting the information from one place to another.The optimal routing process is used to avoid traffic and link failure.Thefitness function is designed based on Link stability and Residual energy.The validation of the proposed algorithm takes solution encoding,fitness calculation,and updat-ing functions.To perform simulation experiments,NS2 simulator software is used.The performance of the proposed approach is analyzed based on different metrics namely,delivery ratio,delay time,throughput,and overhead.The effec-tiveness of the proposed method compared with different algorithms.Compared to other existing VANET algorithms,the hybrid algorithm has proven to be very efficient in terms of packet delivery ratio and delay.展开更多
With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.Howeve...With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.展开更多
文摘Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
文摘This paper reviews the research work done on the Reliability Analysis of Controller Area Network (CAN) based systems. During the last couple of decades, real-time researchers have extended schedulability analysis to a mature technique which for nontrivial systems can be used to determine whether a set of tasks executing on a single CPU or in a distributed system will meet their deadlines or not [1-3]. The main focus of the real-time research community is on hard real-time systems, and the essence of analyzing such systems is to investigate if deadlines are met in a worst case scenario. Whether this worst case actually will occur during execution, or if it is likely to occur, is not normally considered. Reliability modeling, on the other hand, involves study of fault models, characterization of distribution functions of faults and development of methods and tools for composing these distributions and models in estimating an overall reliability figure for the system [4]. This paper presents the research work done on reliability analysis developed with a focus on Controller-Area-Network-based automotive systems.
文摘The Controller Area Network (CAN) is a well established control network for automotive and automation control applications. Time-Triggered Controller Area Network (TTCAN) is a recent development which introduces a session layer,for message scheduling,to the existing CAN standard,which is a two layer standard comprising of a physical layer and a data link layer. TTCAN facilitates network communication in a time-triggered fashion,by introducing a Time Division Multiple Access style communication scheme. This allows deterministic network behavior,where maximum message latency times can be quantified and guaranteed. In order to solve the problem of determinate time latency and synchronization among several districted units in one auto panel CAN systems,this paper proposed a prototype design implementation for a shared-clock scheduler based on PIC18F458 MCU. This leads to improved CAN system performance and avoid the latency jitters and guarantee a deterministic communication pattern on the bus. The real runtime performance is satisfied.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)Australian Research Council(DP190101557)。
文摘In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
文摘Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss.
基金partly supported by the National Natural Science Foundation of China(Grant No.61272412)Project 2016194 Supported by Graduate Innovation Fund of Jilin UniversitySpecialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20120061110044
文摘Recently,ultrasonic waves had been introduced as the transmission medium in Body Area Networks(BANs) to reduce the incalculable damage caused by radio waves. However,the communications based on ultrasonic waves suffer from poor propagation of signals in air and consume too much energy. To address these limitations,firstly,we make the theoretical analysis to ensure ultrasonic waves could be used in BANs(UBANs). Then,we propose an error control strategy in UBANs to dynamically adjust the error control scheme and the Max-Retries based on the current channel state,which is called UECS. The UECS is based on IEEE 802.15.6 standards and considering the characteristics of ultrasonic waves in BANs. Simulation results show that UECS achieves better performance in terms of packet delivery ratio and energy consumption compared with the traditional strategies.
文摘Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.
基金supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)under Grant No.NIPA-2011-(C1090-1121-0002)
文摘In this paper, we provide a comprehensive survey of key energy-efficient Medium Access Control (MAC) protocols for Wireless Body Area Networks (WBANs). At the outset, we outline the crucial attributes of a good MAC protocol for WBAN. Several sources that contribute to the energy inefficiency of WBAN are identified, and features of the various MAC protocols qualitatively compared. Then, we further investigate some representative TDMA-based energy-efficient MAC protocols for WBAN by emphasizing their strengths and weaknesses. Finally, we conclude with a number of open research issues with regard to WBAN MAC layer.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.
基金High-Tech Research and DevelopmentProgram of China (No. 2003AA123310)
文摘OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.
基金Supported by the Science Foundation of Shanghai Mu-nicipal Commission of Science and Technology under contract 045115012.
文摘This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.
基金supported by the National Natural Science Foundation of China(No.52072341)。
文摘Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and insulation wear of the cables can cause intermittent connection(IC)faults to occur frequently in the CAN,which will affect the dynamic behavior and the safety of the system.Hence,quantitatively evaluating the performance of the CAN under the influence of IC faults is crucial to real-time health monitoring of the system.In this paper,a novel methodology is proposed for real-time quantitative evaluation of CAN availability when considering IC faults,with the system availability parameter being calculated based on the network state transition model.First,the causal relationship between IC fault and network error response is constructed,based on which the IC fault arrival rate is estimated.Second,the states of the network considering IC faults are analyzed,and the deterministic and stochastic Petri net(DSPN)model is applied to describe the transition relationship of the states.Then,the parameters of the DSPN model are determined and the availability of the system is calculated based on the probability distribution and physical meaning of markings in the DSPN model.A testbed is constructed and case studies are conducted to verify the proposed methodology under various experimental setups.Experimental results show that the estimation results obtained using the proposed method agree well with the actual values.
基金National Natural Science Foundation of China (60502017, 60532030, 60625102)The Blue-Sky New Star Grant of Beijing University of Aeronautics and Astronautics (2004)
文摘An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control and the error recovery are differentiated by combined dynamic random early detection-explicit congestion notification (DRED-ECN) algorithm, and, moreover, the pertaining congestion control methods are used in TCP-ATCA to improve the throughput. By introducing the entire recovery algorithm, the unnecessary congestion window decrease is reduced, and the throughput and fairness are improved. Simulation results show that, compared with TCP-Reno, TCP-ATCA provides a better throughput performance when the link capacity is higher ( ≥600 packet/s), and roughly the same when it is lower. At the same time, TCP-ATCA also increases fairness and reduces transmission delay.
基金supported by Chongqing Big Data Engineering Laboratory for Children,Chongqing Electronics Engineering Technology Research Center for Interactive Learning,Project of Science and Technology Research Program of Chongqing Education Commission of China. (No.KJZD-K201801601).
文摘The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
基金The manuscript APC is supported by the grant name(UMS No.DFK2005)“Smart Vertical farming Technology for Temperate vegetable cultivation in Sabah:practising smart automation system using IR and AI technology in agriculture 4.0”.
文摘IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.
文摘Vehicle Ad hoc Networks(VANETs)have high mobility and a rando-mized connection structure,resulting in extremely dynamic behavior.Several challenges,such as frequent connection failures,sustainability,multi-hop data transfer,and data loss,affect the effectiveness of Transmission Control Protocols(TCP)on such wireless ad hoc networks.To avoid the problem,in this paper,mobility-aware zone-based routing in VANET is proposed.To achieve this con-cept,in this paper hybrid optimization algorithm is presented.The hybrid algo-rithm is a combination of Ant colony optimization(ACO)and artificial bee colony optimization(ABC).The proposed hybrid algorithm is designed for the routing process which is transmitting the information from one place to another.The optimal routing process is used to avoid traffic and link failure.Thefitness function is designed based on Link stability and Residual energy.The validation of the proposed algorithm takes solution encoding,fitness calculation,and updat-ing functions.To perform simulation experiments,NS2 simulator software is used.The performance of the proposed approach is analyzed based on different metrics namely,delivery ratio,delay time,throughput,and overhead.The effec-tiveness of the proposed method compared with different algorithms.Compared to other existing VANET algorithms,the hybrid algorithm has proven to be very efficient in terms of packet delivery ratio and delay.
基金supported part by the National Natural Science Foundation of China(61601252,61801254)Public Technology Projects of Zhejiang Province(LG-G18F020007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LY20F020008,LY18F020011,LY20F010004)K.C.Wong Magna Fund in Ningbo University。
文摘With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.