This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmiss...This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.展开更多
In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of rec...In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.展开更多
In this paper, a representative set of QoS models and QoS-aware on-demand routing protocols are reviewed with emphasis on their ability to support QoS in mobile ad-hoc networks (MANETs) possibly used in WSNs. In parti...In this paper, a representative set of QoS models and QoS-aware on-demand routing protocols are reviewed with emphasis on their ability to support QoS in mobile ad-hoc networks (MANETs) possibly used in WSNs. In particular IntServ, DiffServ, FQMM, and SWAN QoS models are reviewed followed by different QoS-aware on-demand routings in MANETs from different perspectives such as the challenges, classifications, algorithmic aspects in QoS provisions. Tradeoff in providing support to real time (RT) and best effort (BE) traffic is highlighted. Finally, a detailed and comprehensive comparison table is provided for better understanding of QoS provision in MANETs.展开更多
An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous deli...An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.展开更多
Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is th...Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is that every terminal of an ad-hoc network is also functioning as a network router. In this paper we provide a comprehensive review about the principles and mechanisms of routing protocols used in ad-hoc networks. For comparison purposes, we discuss some relevant technical issues of two well-known routing strategies, namely On-Demand (Proactive routing) and Table-Driven (Reactive routing). In particular, focus our attention on two major and well-known routing protocols: AODV (Ad-hoc On-Demand Distance Vector Protocol) and OLSR (Optimized Link State Routing Protocol). Our study has no intention to suggest any definite solution for any ad-hoc network, because it is the case depending on dictated by the nature and varying factors of networks. Instead, we demonstrate our major perception and describe general models that may assist us while modeling a given network.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
Along with the emergence of real-time multi-media,interactive service,real-time voice and other services calling for high quality of service,there should be a good network to support those services.Most present route ...Along with the emergence of real-time multi-media,interactive service,real-time voice and other services calling for high quality of service,there should be a good network to support those services.Most present route algo- rithms with computational complexity hardly consider the restriction of node energy,so it degrades the whole capabil- ity of network.Bandwidth guarantee is one of the most crucial factors in real-time application,and this paper brings forward a distributed on-demand QoS routing protocol based on energy and bandwidth requirement.This QoS routing protocol makes use of bandwidth calculation algorithm and analyzes its route mechanism.The simulation results veri- fy its validity.The QoS routing protocol improves the packet delivery fraction and average end-to-end delay,prolongs the network lifetime,enhances the network performance and satisfies the route requirement for ad hoc networks.展开更多
Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits s...Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.展开更多
This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential ...This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.展开更多
We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routi...We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an...The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu...To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.展开更多
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced techno...The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks.展开更多
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
基金partially supported by National Key Research and Development Program of China(2016YFB0200400)National Natural Science Foundation of China(No.61379157)+1 种基金Program of Science and Technology of Guangdong(No.2015B010111001)MOE-CMCC Joint Research Fund of China(No.MCM20160104)
文摘This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.
基金the National High Technology Research and Development Progamme of China(No2005AA123820)the National Natural Science Foundation of China(No60472052 and No10577007)
文摘In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.
文摘In this paper, a representative set of QoS models and QoS-aware on-demand routing protocols are reviewed with emphasis on their ability to support QoS in mobile ad-hoc networks (MANETs) possibly used in WSNs. In particular IntServ, DiffServ, FQMM, and SWAN QoS models are reviewed followed by different QoS-aware on-demand routings in MANETs from different perspectives such as the challenges, classifications, algorithmic aspects in QoS provisions. Tradeoff in providing support to real time (RT) and best effort (BE) traffic is highlighted. Finally, a detailed and comprehensive comparison table is provided for better understanding of QoS provision in MANETs.
文摘An ants-based on-demand routing algorithm (AORA) specialized for mobile ad hoc networks is proposed. AORA measures the network's traffic information including delivery time, route energy etc. by the continuous delivery of data packets, then calculates the compositive parameter for each route which can be seen as the stigmity and uses it to choose the comparatively optimal route in real time. To adjust the weight of each traffic information, the algorithm can meet the different demand of the network's user. Multipath source self repair routing (MSSRR) algorithm and dynamic source routing (DSR) can be seen as the special samples of AORA. The routing overhead is not increased in this algorithm. By using simulation, it can be seen that the performance of AORA is better than that of DSR in all scenarios obviously, especially the delivery fraction is increased by more than 100 96.
文摘Routing on ad-hoc network has become a major research issue among the networking communities due to its increasing complexity and the surge of challenging problems. One major factor contributing to this tendency is that every terminal of an ad-hoc network is also functioning as a network router. In this paper we provide a comprehensive review about the principles and mechanisms of routing protocols used in ad-hoc networks. For comparison purposes, we discuss some relevant technical issues of two well-known routing strategies, namely On-Demand (Proactive routing) and Table-Driven (Reactive routing). In particular, focus our attention on two major and well-known routing protocols: AODV (Ad-hoc On-Demand Distance Vector Protocol) and OLSR (Optimized Link State Routing Protocol). Our study has no intention to suggest any definite solution for any ad-hoc network, because it is the case depending on dictated by the nature and varying factors of networks. Instead, we demonstrate our major perception and describe general models that may assist us while modeling a given network.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金the PhD Programs Foundation of Superior Colleges and Universities(20060611010)International coOperation projects in science and technology of the State Ministry of Science(2007 DFR10420)+1 种基金Science and Technology research projects of Chongqing(CSTC,2006AA7024) and (CSTC,2007AB2041)Natural Science Found of ChongQing(CSTC2007BB2194)
文摘Along with the emergence of real-time multi-media,interactive service,real-time voice and other services calling for high quality of service,there should be a good network to support those services.Most present route algo- rithms with computational complexity hardly consider the restriction of node energy,so it degrades the whole capabil- ity of network.Bandwidth guarantee is one of the most crucial factors in real-time application,and this paper brings forward a distributed on-demand QoS routing protocol based on energy and bandwidth requirement.This QoS routing protocol makes use of bandwidth calculation algorithm and analyzes its route mechanism.The simulation results veri- fy its validity.The QoS routing protocol improves the packet delivery fraction and average end-to-end delay,prolongs the network lifetime,enhances the network performance and satisfies the route requirement for ad hoc networks.
基金the National Natural Science Foundation of China,GrantNumbers(62272007,62001007)the Natural Science Foundation of Beijing,GrantNumbers(4234083,4212018)The authors also acknowledge the support from King Khalid University for funding this research through the Large Group Project under Grant Number RGP.2/373/45.
文摘Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.
基金supported by the Young and Middle-aged Elitists' Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province under Grant No.T200902Natural Science Foundation of Hubei Province of China under Grant No.2010CDB05601Key Scientific Research Project of Hubei Education Department under Grants No.D20102205, Q20102202, Q20111610
文摘This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.
文摘We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
文摘The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
基金State Grid Corporation of China Science and Technology Project“Research andApplication of Key Technologies for Trusted Issuance and Security Control of Electronic Licenses for Power Business”(5700-202353318A-1-1-ZN).
文摘To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
文摘The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks.
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.