期刊文献+
共找到232,188篇文章
< 1 2 250 >
每页显示 20 50 100
PRECONCENTRATION OF TRACE ZINC IN SEAWATER ON CPPI RESIN BY FIA AND ON-LINE DETECTION BY ICP-AFS
1
作者 Dong Xing YUAN Peng Yuan YANG Xiao Ru WANG Ben Li HUANG Department of Chemistry,Xiamen University,Xiamen,361005 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期237-238,共2页
A quite new type of chelating resin Carboxymethylated Polyethylenimine-Polymethylenepolyphenylene Isocyanate(CPPI)is used for the preconcentration of Zn from high salt water such as seawater. The preconcentration is c... A quite new type of chelating resin Carboxymethylated Polyethylenimine-Polymethylenepolyphenylene Isocyanate(CPPI)is used for the preconcentration of Zn from high salt water such as seawater. The preconcentration is controlled through the technique of Flow Injection Analysis(FIA).The concentrated sample solution is then directly transferred to an Inductively Coupled Plasma-Atomic Fluorescence Spectrometer(ICP-AFS)for determination.The detection limit of Zn by the technique is about 0.06 ppb. 展开更多
关键词 CPPI PRECONCENTRATION OF TRACE ZINC IN SEAWATER ON CPPI RESIN BY FIA AND on-line detection BY ICP-AFS FIA ICP LINE
下载PDF
On-Line Detection of EDM Spark Locations Using Potential Difference Method
2
作者 栗岩 狄士春 +1 位作者 冯晓光 赵万生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第3期82-85,共4页
The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation bet... The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension. 展开更多
关键词 SPARK LOCATIONS POTENTIAL DIFFERENCE method on-line detection DISCHARGING time
下载PDF
On-line Detection of Gas Pipeline Based on the Real-Time Algorithm and Network Technology with Robot
3
作者 鄢波 颜国正 +3 位作者 丁国清 周斌 付西光 左建勇 《Journal of Donghua University(English Edition)》 EI CAS 2004年第5期93-97,共5页
The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robo... The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good. 展开更多
关键词 on-line control control based on network fractal video coding(FVC) Non-Destructive Testing (NDT)
下载PDF
On-Line Detection of Porosity in Gas Tungsten Arc Welding of Aluminum Alloy Based on Spectrum Features
4
作者 蒋浩强 陈善本 许靖远 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期339-348,共10页
The real-time detection of porosity in welding process is an important problem to be solved in intelligent welding manufacturing.A new on-line detection method for porosity of aluminum alloy in robotic arc welding bas... The real-time detection of porosity in welding process is an important problem to be solved in intelligent welding manufacturing.A new on-line detection method for porosity of aluminum alloy in robotic arc welding based on arc spectrum is proposed in this paper.First,k-shape and the improved k-means were used for the initial feature selection of the preprocessed arc spectrum to reduce the data dimension.Second,the secondary feature selection was carried out based on the importance of features to further reduce feature redundancy.Then,the optimal sample label library was established by combining the final characteristic parameters and the X-ray pictures of welds.Finally,an on-line detection method of porosity in gas tungsten arc welding of aluminum alloy based on light gradient boosting machine(LightGBM)was proposed.Compared with extreme gradient boosting(XGBoost)and categorical boosting(CatBoost),this method can achieve better detection performance.The new method proposed in this paper can be used to detect other welding defects,which is helpful to the development of intelligent welding technology. 展开更多
关键词 porosity detection robotic arc welding arc spectrum
原文传递
PD-YOLO:Colon Polyp Detection Model Based on Enhanced Small-Target Feature Extraction
5
作者 Yicong Yu Kaixin Lin +2 位作者 Jiajun Hong Rong-Guei Tsai Yuanzhi Huang 《Computers, Materials & Continua》 SCIE EI 2025年第1期913-928,共16页
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s... In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods. 展开更多
关键词 Polyp detection YOLOv7 SPD-Conv CBAM DECONVOLUTION
下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
6
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
下载PDF
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
7
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 Deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
下载PDF
Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack
8
作者 Jing Guo Ziying Wang +1 位作者 Yajuan Guo Haitao Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期427-442,共16页
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg... The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure. 展开更多
关键词 Anomaly detection electric vehicle aggregation attack deep cross-network
下载PDF
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
9
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 Deep learning underwater target detection attention mechanism
下载PDF
A Survey of Link Failure Detection and Recovery in Software-Defined Networks
10
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期103-137,共35页
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance... Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods. 展开更多
关键词 Software defined networking failure detection failure recovery RESTORATION PROTECTION
下载PDF
A Robust Security Detection Strategy for Next Generation IoT Networks
11
作者 Hafida Assmi Azidine Guezzaz +4 位作者 Said Benkirane Mourade Azrour Said Jabbour Nisreen Innab Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2025年第1期443-466,共24页
Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f... Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS. 展开更多
关键词 IoT security intrusion detection RF KNN SVM EL NSL-KDD Edge-IIoT
下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
12
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
13
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
下载PDF
Unmasking Social Robots’Camouflage:A GNN-Random Forest Framework for Enhanced Detection
14
作者 Weijian Fan Chunhua Wang +1 位作者 Xiao Han Chichen Lin 《Computers, Materials & Continua》 SCIE EI 2025年第1期467-483,共17页
The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection h... The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods. 展开更多
关键词 Social robot detection graph neural networks random forest HOMOPHILY heterophily
下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
15
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
下载PDF
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
16
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
下载PDF
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
18
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
下载PDF
On-line Fault Detection Using SVM-based Dynamic MPLS for Batch Processes 被引量:8
19
作者 李运锋 汪志锋 袁景淇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期754-758,共5页
In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector machines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMP... In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector machines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to develop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged window technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production. 展开更多
关键词 FAULT detection multiway PARTIAL least squares support vector machines time-lagged WINDOW
下载PDF
On-line Fault Detection Using SVM-based Dynamic MPLS for Batch Processes 被引量:1
20
作者 李运锋 汪志锋 袁景淇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6X期754-758,共5页
In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma- chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based D... In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma- chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to de- velop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged win- dow technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production. 展开更多
关键词 FAULT detection multiway PARTIAL least SQUARES support vector MACHINES time-lagged WINDOW
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部