Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the...Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.展开更多
钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制...钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制电路板(Printed Circuit Board)的分体式线圈结构,分析了线圈匝数、线圈层数、线距等参数对检测信号的影响;建立主磁通检测模型,探究损伤宽度对主磁通检测信号的影响规律,并针对损伤宽度变化造成的信号损失设计补偿方法;最后通过钢丝实验验证金属横截面积定量检测效果,表明该方法定量误差在1%以内,能够有效检测钢丝绳的LMA。展开更多
文摘Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.