Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capa...In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.展开更多
A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put fo...A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.展开更多
A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field duri...A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.展开更多
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo...Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.展开更多
On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real tim...On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
Cowpea (Vigna unguiculata (L.) Walp), a legume crop that is grown in the worldwide, provides beneficial proteins for human consumption and animal feeding. In comparison, Rapid N analyzer as traditional method, has bee...Cowpea (Vigna unguiculata (L.) Walp), a legume crop that is grown in the worldwide, provides beneficial proteins for human consumption and animal feeding. In comparison, Rapid N analyzer as traditional method, has been widely used to measure protein content through the percentage of total nitrogen in the seed’s grounded powder. Near-Infrared Reflectance (NIR) has commonly been used to measure protein content in soybean seeds using whole grain without the need of seed grinding, which makes it possible to obtain fast results at a lower cost-per-analysis than the traditional combustion method. The specific objective of this study is to test a rapid method for measuring cowpea seed protein content by the NIR analyzer comparing to the traditional rapid N analyzer. A total of 240 cowpea genotypes were used in this study, including six seed coat colors, black, blackeye, browneye, cream, pinkeye, and red with 40 cowpea genotypes. The results showed that a linear relationship exists between the NIR analyzer and the Rapid N analyzer in the six different color groups. The correlation efficiency (r) between the seed protein contents from NIR and Rapid N was higher for pinkeye seed (r = 0.867), blackeye (0.771), cream (0.729), browneye (0.700), and red (0.623), respectively, but lower for black seeds, indicating that the NIR analyzer can be used to measure protein content for cowpea seeds with the five types of seed coat except black. Overview, the cowpea seed protein content measured from the NIR analyzer showed a little higher seed protein content. A series of regression models with different seed coat color have been built to adjust to protein content of colorful cowpea seeds from the NIR analyzer. But, it is not recommended to use for black color seeds due to a very low correlation efficiency (r) value with 0.184.展开更多
On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a...On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a review of the development of this techniques and introduces four kinds of developed measurement systems. And the future development trends in this field was also discussed.展开更多
Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c mea...Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.展开更多
The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four v...The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.展开更多
In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle ...In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle size distribution and concentration are very important, because the coal particle velocity, concentration or size range have an impact on the whole combustion process. This paper introduces an optical measurement setup based on the transmission fluctuation correlation spectrum measurement technique, which realizes the simultaneous measurement of particle velocity, particle size distribution and concentration. Compared with image method, ultrasonic spectrum method and other methods, the experimental device is simple and low-cost.展开更多
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
文摘In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.
文摘A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.
基金Reactor Pressure Boundary Materials Project !under the Nuclear R & D Program by MOST in Korea.
文摘A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.
文摘Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.
基金supported by the National Natural Science Foundation of China(No.41805105)。
文摘On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
文摘Cowpea (Vigna unguiculata (L.) Walp), a legume crop that is grown in the worldwide, provides beneficial proteins for human consumption and animal feeding. In comparison, Rapid N analyzer as traditional method, has been widely used to measure protein content through the percentage of total nitrogen in the seed’s grounded powder. Near-Infrared Reflectance (NIR) has commonly been used to measure protein content in soybean seeds using whole grain without the need of seed grinding, which makes it possible to obtain fast results at a lower cost-per-analysis than the traditional combustion method. The specific objective of this study is to test a rapid method for measuring cowpea seed protein content by the NIR analyzer comparing to the traditional rapid N analyzer. A total of 240 cowpea genotypes were used in this study, including six seed coat colors, black, blackeye, browneye, cream, pinkeye, and red with 40 cowpea genotypes. The results showed that a linear relationship exists between the NIR analyzer and the Rapid N analyzer in the six different color groups. The correlation efficiency (r) between the seed protein contents from NIR and Rapid N was higher for pinkeye seed (r = 0.867), blackeye (0.771), cream (0.729), browneye (0.700), and red (0.623), respectively, but lower for black seeds, indicating that the NIR analyzer can be used to measure protein content for cowpea seeds with the five types of seed coat except black. Overview, the cowpea seed protein content measured from the NIR analyzer showed a little higher seed protein content. A series of regression models with different seed coat color have been built to adjust to protein content of colorful cowpea seeds from the NIR analyzer. But, it is not recommended to use for black color seeds due to a very low correlation efficiency (r) value with 0.184.
文摘On-line measurement of manufaturing quality of rolled steel needs the performances of noncontact, high-responds, high-resolution and high aceuracy. The reccntly developed hardware makes it possible. This paper gives a review of the development of this techniques and introduces four kinds of developed measurement systems. And the future development trends in this field was also discussed.
文摘Based on laser-scanned measuring technology, a met ho d of on-line dynamic non-contact measurement and feedback control of processin g dimension, i.e. the double edges laser-scanned large diameter on-line dynami c measurement and control system is presented, which can be used to measure diam eter in large-scale machine part processing. In this paper, the working princip le, overall structure and microcomputer real-time control and data processing s ystem of the system are discussed in detail, the method of double edges scanned large diameter dimension measurement and control is theoretically analyzed, its possibility has been verified by experiments of lathing large diameters machine parts by a vertical lathe. The system adopts the measuring scheme of double edge s laser-scanned combined with grating displacement measurement. The two edges c haracteristic information of the measured diameter is given by the double edges laser-scanned measuring system, the non-contact measurement of large diameter dimension is realized to combine with the grating displacement measuring systems . The main controller gives out feedback control signal by means of measured res ults, and controls advance and retreat of lathe tool by the servo-control syste m of a vertical lathe to realize on-line dynamic non-contact measurement and c ontrol in processing.
文摘The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.
文摘In coal-fired power generation industry, parameters such as particle size affect combustion efficiency. Especially in the application of two-phase flow clean energy, the parameters such as particle velocity, particle size distribution and concentration are very important, because the coal particle velocity, concentration or size range have an impact on the whole combustion process. This paper introduces an optical measurement setup based on the transmission fluctuation correlation spectrum measurement technique, which realizes the simultaneous measurement of particle velocity, particle size distribution and concentration. Compared with image method, ultrasonic spectrum method and other methods, the experimental device is simple and low-cost.