期刊文献+
共找到79,251篇文章
< 1 2 250 >
每页显示 20 50 100
On-Line Recognition of Handwritten Chinese Characters
1
作者 唐降龙 刘家锋 +1 位作者 杨辉 舒文豪 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第3期22-25,共4页
For the design of a system for on-line recognition of handwritten Chinesecharacters stroke segment ordering is such a difficult problem no good solution is availableto it yet so far.An optimal stroke segment matching ... For the design of a system for on-line recognition of handwritten Chinesecharacters stroke segment ordering is such a difficult problem no good solution is availableto it yet so far.An optimal stroke segment matching algorithm based on stroke structureinformation is proposed in this paper.Results of experiments are presented so thatcomparison can be made between the proposed algorithm and the stroke segmentmatching method based on the strokes’absoulute coordinates. 展开更多
关键词 on-line recognition STROKE ORDERING OPTIMAL MATCHING
下载PDF
On-line Recognition of Abnormal Patterns in Bivariate Autocorrelated Process Using Random Forest
2
作者 Miao Xu Bo Zhu +1 位作者 Chunmei Chen Yuwei Wan 《Computers, Materials & Continua》 SCIE EI 2022年第10期1707-1722,共16页
It is not uncommon that two or more related process quality characteristics are needed to be monitored simultaneously in production process for most of time.Meanwhile,the observations obtained online are often seriall... It is not uncommon that two or more related process quality characteristics are needed to be monitored simultaneously in production process for most of time.Meanwhile,the observations obtained online are often serially autocorrelated due to high sampling frequency and process dynamics.This goes against the statistical I.I.D assumption in using the multivariate control charts,which may lead to the performance of multivariate control charts collapse soon.Meanwhile,the process control method based on pattern recognition as a non-statistical approach is not confined by this limitation,and further provide more useful information for quality practitioners to locate the assignable causes led to process abnormalities.This study proposed a pattern recognition model using Random Forest(RF)as pattern model to detect and identify the abnormalities in bivariate autocorrelated process.The simulation experiment results demonstrate that the model is superior on recognition accuracy(RA)(97.96%)to back propagation neural networks(BPNN)(95.69%),probability neural networks(PNN)(94.31%),and support vector machine(SVM)(97.16%).When experimenting with simulated dynamic process data flow,the model also achieved better average running length(ARL)and standard deviation of ARL(SRL)than those of the four comparative approaches in most cases of mean shift magnitude.Therefore,we get the conclusion that the RF model is a promising approach for detecting abnormalities in the bivariate autocorrelated process.Although bivariate autocorrelated process is focused in this study,the proposed model can be extended to multivariate autocorrelated process control. 展开更多
关键词 Random Forest bivariate autocorrelated process pattern recognition average run length
下载PDF
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
3
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
下载PDF
Air target intent recognition method combining graphing time series and diffusion models
4
作者 Chenghai LI Ke WANG +2 位作者 Yafei SONG Peng WANG Lemin LI 《Chinese Journal of Aeronautics》 2025年第1期507-519,共13页
Air target intent recognition holds significant importance in aiding commanders to assess battlefield situations and secure a competitive edge in decision-making.Progress in this domain has been hindered by challenges... Air target intent recognition holds significant importance in aiding commanders to assess battlefield situations and secure a competitive edge in decision-making.Progress in this domain has been hindered by challenges posed by imbalanced battlefield data and the limited robustness of traditional recognition models.Inspired by the success of diffusion models in addressing visual domain sample imbalances,this paper introduces a new approach that utilizes the Markov Transfer Field(MTF)method for time series data visualization.This visualization,when combined with the Denoising Diffusion Probabilistic Model(DDPM),effectively enhances sample data and mitigates noise within the original dataset.Additionally,a transformer-based model tailored for time series visualization and air target intent recognition is developed.Comprehensive experimental results,encompassing comparative,ablation,and denoising validations,reveal that the proposed method achieves a notable 98.86%accuracy in air target intent recognition while demonstrating exceptional robustness and generalization capabilities.This approach represents a promising avenue for advancing air target intent recognition. 展开更多
关键词 Intent recognition Markov Transfer Field Denoising Diffusion Probability Model Transformer Neural Network
原文传递
A systematic method based on statistical pattern recognition for estimating product quality on-line 被引量:1
5
作者 Guang Li, Huade Li, Shaoyuan Sun, and Zhengguang XuInformation Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期69-73,共5页
To avoid the complexity of building mechanistic models by studying the inner nature of the object, a systematic method based on statistical pattern recognition is developed in order to estimate the product quality on-... To avoid the complexity of building mechanistic models by studying the inner nature of the object, a systematic method based on statistical pattern recognition is developed in order to estimate the product quality on-line. The mapping relationship between a feature space and a product quality space can be built by using regression analysis, and in applying clustering analysis the product quality space can be partitioned automatically. Eventually, estimating product quality on-line can be accomplished by sorting the mapped data in the partitioned quality space. A concrete problem is proposed which has a relatively small ratio of training data to input variables. By implementing the method mentioned above, a satisfying result has been achieved. Furthermore, the further question about choosing suitable mapping methods is briefly discussed. 展开更多
关键词 pattern recognition regression analysis clustering analysis ISODATA algorithm sorting algorithm
下载PDF
An on-line free handwritten Chinese character recognition method based on component cascaded HMMs 被引量:1
6
作者 Zhao Wei(赵巍) Liu Jiafeng Tang Xianglong 《High Technology Letters》 EI CAS 2005年第3期301-305,共5页
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and... This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%. 展开更多
关键词 chinese character recognition handwritten component HMM cascaded model
下载PDF
On-line Cutting Quality Recognition in Milling Using a Radical Basis Function Neural Network
7
作者 马玉林 《High Technology Letters》 EI CAS 2000年第2期40-44,共5页
Tool wear, chatter vibration, chip breaking and built up edge are main phenomena to be monitored in modern manufacturing processes, which are considered as important factors to the quality of products. They are closel... Tool wear, chatter vibration, chip breaking and built up edge are main phenomena to be monitored in modern manufacturing processes, which are considered as important factors to the quality of products. They are closely related to the cutting parameters, which are to be selected in manufacturing process. However, it is very difficult to measure directly the cutting quality based on on line monitoring. In this study, the relationship between the cutting parameters and cutting quality is analyzed. A Radical Basis Function (RBF) neural network based on line quality recognition scheme is also presented, which monitors the level of surface roughness. The experimental results reveal that the RBF neural network has a high prediction success rate. 展开更多
关键词 QUALITY recognition Monitoring RBF NEURAL network
下载PDF
Boosting the Expense and Performance of Ann/Hmm Approch for on-line Handwriting Recognition
8
作者 李海峰 HAN Jiqing +2 位作者 Zheng Tieran Ma Lin Gallinari P 《High Technology Letters》 EI CAS 2003年第4期83-87,共5页
This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed ... This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices. 展开更多
关键词 BOOSTING state sharing hierarchical clustering on line handwriting recognition
下载PDF
BCCLR:A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues 被引量:4
9
作者 Yunhe Wang Yuxin Xia Shuai Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4489-4507,共19页
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ... In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods. 展开更多
关键词 Action recognition deep learning GCN behavior dependence context clue self-attention
下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
10
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception 被引量:4
11
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor Tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
下载PDF
Unknown Application Layer Protocol Recognition Method Based on Deep Clustering 被引量:1
12
作者 Wu Jisheng Hong Zheng +1 位作者 Ma Tiantian Si Jianpeng 《China Communications》 SCIE CSCD 2024年第12期275-296,共22页
In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extract... In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods. 展开更多
关键词 attention mechanism clustering loss deep clustering network traffic unknown protocol recognition
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
13
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
14
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
下载PDF
A New Speed Limit Recognition Methodology Based on Ensemble Learning:Hardware Validation 被引量:1
15
作者 Mohamed Karray Nesrine Triki Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第7期119-138,共20页
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn... Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology. 展开更多
关键词 Driving automation advanced driver assistance systems(ADAS) traffic sign recognition(TSR) artificial intelligence ensemble learning belief functions voting method
下载PDF
Robust Human Interaction Recognition Using Extended Kalman Filter
16
作者 Tanvir Fatima Naik Bukht Abdulwahab Alazeb +4 位作者 Naif Al Mudawi Bayan Alabdullah Khaled Alnowaiser Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第11期2987-3002,共16页
In the field of computer vision and pattern recognition,knowledge based on images of human activity has gained popularity as a research topic.Activity recognition is the process of determining human behavior based on ... In the field of computer vision and pattern recognition,knowledge based on images of human activity has gained popularity as a research topic.Activity recognition is the process of determining human behavior based on an image.We implemented an Extended Kalman filter to create an activity recognition system here.The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image.To minimize noise,we use Gaussian filters.Extraction of silhouette using the statistical method.We use Binary Robust Invariant Scalable Keypoints(BRISK)and SIFT for feature extraction.The next step is to perform feature discrimination using Gray Wolf.After that,the features are input into the Extended Kalman filter and classified into relevant human activities according to their definitive characteristics.The experimental procedure uses the SUB-Interaction and HMDB51 datasets to a 0.88%and 0.86%recognition rate. 展开更多
关键词 Pattern recognition geometric features activity recognition full-body texture
下载PDF
Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset,Methodology and Evaluation
17
作者 Shiwen Song Rui Zhang +1 位作者 Min Hu Feiyao Huang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5243-5271,共29页
Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi... Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security.Currently,with the emergence of massive high-resolution multi-modality images,the use of multi-modality images for fine-grained recognition has become a promising technology.Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples.The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features.The attention mechanism helps the model to pinpoint the key information in the image,resulting in a significant improvement in the model’s performance.In this paper,a dataset for fine-grained recognition of ships based on visible and near-infrared multi-modality remote sensing images has been proposed first,named Dataset for Multimodal Fine-grained Recognition of Ships(DMFGRS).It includes 1,635 pairs of visible and near-infrared remote sensing images divided into 20 categories,collated from digital orthophotos model provided by commercial remote sensing satellites.DMFGRS provides two types of annotation format files,as well as segmentation mask images corresponding to the ship targets.Then,a Multimodal Information Cross-Enhancement Network(MICE-Net)fusing features of visible and near-infrared remote sensing images,has been proposed.In the network,a dual-branch feature extraction and fusion module has been designed to obtain more expressive features.The Feature Cross Enhancement Module(FCEM)achieves the fusion enhancement of the two modal features by making the channel attention and spatial attention work cross-functionally on the feature map.A benchmark is established by evaluating state-of-the-art object recognition algorithms on DMFGRS.MICE-Net conducted experiments on DMFGRS,and the precision,recall,mAP0.5 and mAP0.5:0.95 reached 87%,77.1%,83.8%and 63.9%,respectively.Extensive experiments demonstrate that the proposed MICE-Net has more excellent performance on DMFGRS.Built on lightweight network YOLO,the model has excellent generalizability,and thus has good potential for application in real-life scenarios. 展开更多
关键词 Multi-modality dataset ship recognition fine-grained recognition attention mechanism
下载PDF
STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES
18
作者 姚永红 Abubakar ADAMU Yekini SHEHU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期551-566,共16页
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti... This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature. 展开更多
关键词 forward-backward-forward algorithm inertial extrapolation variational inequality on-line rule
下载PDF
Spatial Distribution Feature Extraction Network for Open Set Recognition of Electromagnetic Signal
19
作者 Hui Zhang Huaji Zhou +1 位作者 Li Wang Feng Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期279-296,共18页
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri... This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively. 展开更多
关键词 Electromagnetic signal recognition deep learning feature extraction open set recognition
下载PDF
Recent Advances on Deep Learning for Sign Language Recognition
20
作者 Yanqiong Zhang Xianwei Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2399-2450,共52页
Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa... Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community. 展开更多
关键词 Sign language recognition deep learning artificial intelligence computer vision gesture recognition
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部