In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented m...Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.展开更多
Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these ...Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.展开更多
Satellite communication has been seen as a vital part of the sixth generation communication,which greatly extends network coverage.In satellite communication,resource management is a key problem attracting many resear...Satellite communication has been seen as a vital part of the sixth generation communication,which greatly extends network coverage.In satellite communication,resource management is a key problem attracting many research interests.However,previous study mainly focuses on throughput improvement via power allocation and spectrum assignment and the proposed approaches are mostly model-based and dedicated to specific problem structures.Fortunately,with the trend of edge intelligence,complex resource management problems can be efficiently resolved in a model-free manner.In this paper,a joint beam activation,user-beam association and time resource allocation approach is proposed.The core idea is using stochastic learning at the ground station to identify active user-link beams to meet user rate demand.In addition,the convergence,optimality and complexity of our proposal are rigorously discussed.By simulation,it is shown that the rate goal of most of the users can be met and meanwhile satellite energy is saved owing to much less active beams.展开更多
Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite net...Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.展开更多
ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, i...ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example, when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the grow...In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.展开更多
A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are deri...A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and exter...The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.展开更多
The rapid development and continuous updating of the mega satellite constellation(MSC)have brought new visions for the future 6G coverage extension, where the global seamless signal coverage can realize ubiquitous ser...The rapid development and continuous updating of the mega satellite constellation(MSC)have brought new visions for the future 6G coverage extension, where the global seamless signal coverage can realize ubiquitous services for user terminals. However, global traffic demands present nonuniform characteristics. Therefore, how to ensure the on-demand service coverage for the specific traffic demand, i.e., the ratio of traffic density to service requirement per unit area, is the core issue of 6G wireless coverage extension exploiting the MSC. To this regard, this paper first discusses the open challenges to reveal the future direction of 6G wireless coverage extension from the perspective of key factors affecting service coverage performance, i.e., the network access capacity, space segment capacity and their matchingrelationship. Furthermore, we elaborate on the key factors affecting effective matchings of the aforementioned aspects, thereby improving service coverage capability.展开更多
A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing sp...A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing spacecraft,a tether and a failed satellite,is presented under the earth center inertia coordinate system,then model simplification is conducted under the assumption that the failed satellite’s mass is far smaller than the servicing spacecraft’s,meanwhile the tether’s length is far smaller than the size of the servicing spacecraft’s orbit.Analysis shows that the retrieval process is intrinsically unstable as the Coriolis force functions is a negative damping.A retrieval strategy based on only the tether’s tension is designed,resulting in the fastest retrieval speed.In the proposed strategy,firstly,the tether’s swing angle amplitude is adjusted to 45?by deploying/retrieving the tether;then the tether swings freely with fixed length until it reaches negative maximum angle–45?;finally,the tether is retrieved by the pre-assigned exponential law.For simplicity,only the coplanar situation,that the tether swings in the plane of the servicing spacecraft’s orbit,is studied.Numerical simulation verifies the effectiveness of the strategy proposed.展开更多
An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the au...An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the austral summers 1997~1998 and 1999~2000,with the current coastline from a SPOT satellite image mosaic,topographic information from existing maps and from the Antarctic Digital Database.From this data sets,a digital terrain model (DTM) was generated using Arc/Info GIS.In a second step,a satellite image map at the scale 1∶100 000 was assembled from contour lines derived from the DTM and the satellite mosaic.A lack of accurate topographic information in the eastern part of the island was identified.Additional topographic surveying or SAR interferometry should be used to improve the data quality in that area.The GIS integrated database will be indispensable for glaciological and climatological studies and administrative and scientific purposes.In future,the application of GIS techniques will be mandatory for environmental impact studies and environmental monitoring as well as for management plans on King George Island.展开更多
A novel bandwidth allocation strategy and a connection admission control technique arc proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees ...A novel bandwidth allocation strategy and a connection admission control technique arc proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees in multimedia low earth orbit (LEO) satellite networks. Our connection admission control scheme, we call the probability based dynamic channel reservation strategy (PDR), dynamically reserves bandwidth for real-time services based on their handoff probability. And the reserved bandwidth for real-time handoff connection can also be used by new connections under a certain probability determined by the mobility characteristics and bandwidth usage of the system. Simulation results show that our scheme not only lowers the call dropping probability (CDP) for Class I real-time service but also maintains the call blocking probability (CBP) to certain degree. Consequently, the scheme can offer very low CDP for rcal-time connections while keeping resource utilization high.展开更多
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars (60625102)
文摘Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.
基金北京市自然科学基金,国家重点基础研究发展计划(973计划),the fund of Forest Protection Laboratory, State Forestry Administration
文摘Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.
基金supported in part by the National Natural Science Foundation of China(No.62001053)the Beijing Municipal Science and Technology Project(No.Z211100004421017)Young Elite Scientist Sponsorship Program by China Institute of Communications.
文摘Satellite communication has been seen as a vital part of the sixth generation communication,which greatly extends network coverage.In satellite communication,resource management is a key problem attracting many research interests.However,previous study mainly focuses on throughput improvement via power allocation and spectrum assignment and the proposed approaches are mostly model-based and dedicated to specific problem structures.Fortunately,with the trend of edge intelligence,complex resource management problems can be efficiently resolved in a model-free manner.In this paper,a joint beam activation,user-beam association and time resource allocation approach is proposed.The core idea is using stochastic learning at the ground station to identify active user-link beams to meet user rate demand.In addition,the convergence,optimality and complexity of our proposal are rigorously discussed.By simulation,it is shown that the rate goal of most of the users can be met and meanwhile satellite energy is saved owing to much less active beams.
基金the National Nat-ural Science Foundation of China under Grants 61771163the Natural Science Foundation for Out-standing Young Scholars of Heilongjiang Province un-der Grant YQ2020F001the Science and Technol-ogy on Communication Networks Laboratory under Grants SXX19641X072 and SXX18641X028.(Cor-respondence author:Min Jia)。
文摘Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.
文摘ECFD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example, when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
基金This work is supported by the Fundamental Research Funds for the Central Universities.
文摘In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.
基金supported by the National Natural Science Foundation of China (11102018)
文摘A new type of estimator is developed for the satellite formation to track and inspect on-orbit targets. The follower satellite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and controllability are analyzed to qualitatively evaluate the convergence performance. Finally, an on-orbit target inspection scenario is numerically simulated to verify the performance of the estimator based on pseudo measurement.
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
基金National Natural Science Foundation of China(No.41601492)SAST Foundation(No.SAST2016091)Development Program of China(No.2016YFB0501402)。
文摘The paper presents a geometric calibration method based on the sparse ground control points (GCPs), aiming to the linear push-broom optical satellite. This method can achieve the optimal estimate of internal and external parameters with two overlapped image pair along the charge-coupled device (CCD), and sparse GCPs in the image region, further get rid of the dependence on the expensive calibration site data. With the calibrated parameters, the line of sight (LOS) of all CCD detectors can be recovered. This paper firstly establishes the rigorous imaging model of linear push-broom optical satellite based on its imaging mechanism. And then the calibration model is constructed by improving the internal sensor model with a viewing-angle model after an analysis on systematic errors existing in the imaging model is performed. A step-wise solution is applied aiming to the optimal estimate of external and internal parameters. At last, we conduct a set of experiments on the ZY-3 NAD camera and verify the accuracy and effectiveness of the presented method by comparison.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1806100in part by the Natural Science Foundation of China under Grants U19B2025, 62121001, 62001347, and 61801361。
文摘The rapid development and continuous updating of the mega satellite constellation(MSC)have brought new visions for the future 6G coverage extension, where the global seamless signal coverage can realize ubiquitous services for user terminals. However, global traffic demands present nonuniform characteristics. Therefore, how to ensure the on-demand service coverage for the specific traffic demand, i.e., the ratio of traffic density to service requirement per unit area, is the core issue of 6G wireless coverage extension exploiting the MSC. To this regard, this paper first discusses the open challenges to reveal the future direction of 6G wireless coverage extension from the perspective of key factors affecting service coverage performance, i.e., the network access capacity, space segment capacity and their matchingrelationship. Furthermore, we elaborate on the key factors affecting effective matchings of the aforementioned aspects, thereby improving service coverage capability.
基金supported by the Fundamental Research Funds for the Central Universities(NUAA-NS2016082)
文摘A retrieval control strategy for failed satellite,which is connected to a servicing spacecraft by a tether,is studied.The Lagrange analytical mechanics based dynamics modeling for the system composed of a servicing spacecraft,a tether and a failed satellite,is presented under the earth center inertia coordinate system,then model simplification is conducted under the assumption that the failed satellite’s mass is far smaller than the servicing spacecraft’s,meanwhile the tether’s length is far smaller than the size of the servicing spacecraft’s orbit.Analysis shows that the retrieval process is intrinsically unstable as the Coriolis force functions is a negative damping.A retrieval strategy based on only the tether’s tension is designed,resulting in the fastest retrieval speed.In the proposed strategy,firstly,the tether’s swing angle amplitude is adjusted to 45?by deploying/retrieving the tether;then the tether swings freely with fixed length until it reaches negative maximum angle–45?;finally,the tether is retrieved by the pre-assigned exponential law.For simplicity,only the coplanar situation,that the tether swings in the plane of the servicing spacecraft’s orbit,is studied.Numerical simulation verifies the effectiveness of the strategy proposed.
文摘An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the austral summers 1997~1998 and 1999~2000,with the current coastline from a SPOT satellite image mosaic,topographic information from existing maps and from the Antarctic Digital Database.From this data sets,a digital terrain model (DTM) was generated using Arc/Info GIS.In a second step,a satellite image map at the scale 1∶100 000 was assembled from contour lines derived from the DTM and the satellite mosaic.A lack of accurate topographic information in the eastern part of the island was identified.Additional topographic surveying or SAR interferometry should be used to improve the data quality in that area.The GIS integrated database will be indispensable for glaciological and climatological studies and administrative and scientific purposes.In future,the application of GIS techniques will be mandatory for environmental impact studies and environmental monitoring as well as for management plans on King George Island.
基金Supported by the National Natural Science Foundation of China (No. 60496313)
文摘A novel bandwidth allocation strategy and a connection admission control technique arc proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees in multimedia low earth orbit (LEO) satellite networks. Our connection admission control scheme, we call the probability based dynamic channel reservation strategy (PDR), dynamically reserves bandwidth for real-time services based on their handoff probability. And the reserved bandwidth for real-time handoff connection can also be used by new connections under a certain probability determined by the mobility characteristics and bandwidth usage of the system. Simulation results show that our scheme not only lowers the call dropping probability (CDP) for Class I real-time service but also maintains the call blocking probability (CBP) to certain degree. Consequently, the scheme can offer very low CDP for rcal-time connections while keeping resource utilization high.