期刊文献+
共找到4,733篇文章
< 1 2 237 >
每页显示 20 50 100
Least Squares One-Class Support Tensor Machine
1
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least Square one-class support Tensor machine one-class classification Upscale Least Square one-class support vector machine one-class support Tensor machine
下载PDF
Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms 被引量:6
2
作者 Chuanqi Li Jian Zhou +1 位作者 Kun Du Daniel Dias 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1019-1036,共18页
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet... Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability. 展开更多
关键词 Underground pillar stability Hard rock support vector machine Metaheuristic algorithms
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:2
3
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 classification algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural Networks Random Forest support vector machines
下载PDF
Optimized Complex Power Quality Classifier Using One vs. Rest Support Vector Machines 被引量:1
4
作者 David De Yong Sudipto Bhowmik Fernando Magnago 《Energy and Power Engineering》 2017年第10期568-587,共20页
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power ... Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances. 展开更多
关键词 Complex Power Quality Optimal Feature Selection one vs. REST support vector machine Learning algorithms WAVELET Transform Pattern Recognition
下载PDF
Turbopump Condition Monitoring Using Incremental Clustering and One-class Support Vector Machine 被引量:2
5
作者 HU Lei HU Niaoqing +1 位作者 QIN Guojun GU Fengshou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期474-479,共6页
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T... Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump. 展开更多
关键词 novelty detection condition monitoring incremental clustering one-class support vector machine TURBOPUMP
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
6
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Classification of the Priority of Auditing XBRL Instance Documents with Fuzzy Support Vector Machines Algorithm
7
作者 Guang Yih Sheu 《Journal of Autonomous Intelligence》 2019年第2期1-13,共13页
Concluding the conformity of XBRL(eXtensible Business Reporting Language)instance documents law to the Benford's law yields different results before and after a company's financial distress.A new idea of apply... Concluding the conformity of XBRL(eXtensible Business Reporting Language)instance documents law to the Benford's law yields different results before and after a company's financial distress.A new idea of applying the machine learning technique to redefine the way conventional auditors work is therefore proposed since the unacceptable conformity implies a large likelihood of a fraudulent document.Fuzzy support vector machines models are developed to implement such an idea.The dependent variable is a fuzzy variable quantifying the conformity of an XBRL instance document to the Benford's law;whereas,independent variables are financial ratios.The interval factor method is introduced to express the fuzziness in input data.It is found the range of a fuzzy support vector machines model is controlled by maximum and minimum dependent and independent variables.Therefore,defining any member function to describe the fuzziness in input data is unnecessary.The results of this study indicate that the price-to-book ratio versus equity ratio is suitable to classify the priority of auditing XBRL instance documents with the less than 30%misclassification rate.In conclusion,the machine learning technique may be used to redefine the way conventional auditors work.This study provides the main evidence of applying a future project of training smart auditors. 展开更多
关键词 Fuzzy support vector machines algorithm INTERVAL factor method Benford’s law XBRL AUDIT
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
8
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm support vector machine Feature extraction RECOGNITION
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
9
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection support vector machine (SVM) RECURSIVE feature ELIMINATION (RFE) GENETIC algorithm (GA) Parameter SELECTION
下载PDF
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
10
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm FUZZY support vector machine
下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
11
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
Hooke and Jeeves algorithm for linear support vector machine 被引量:1
12
作者 Yeqing Liu Sanyang Liu Mingtao Gu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期138-141,共4页
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while... Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification. 展开更多
关键词 support vector machine classIFICATION pattern search Hooke and Jeeves coordinate descent global Newton algorithm.
下载PDF
Intelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines 被引量:2
13
作者 Sheng Ding Li Chen 《Intelligent Information Management》 2010年第6期354-364,共11页
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM... Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data. 展开更多
关键词 support vector machine (SVM) GENETIC algorithm (GA) Particle SWARM OPTIMIZATION (PSO) Feature Selection OPTIMIZATION
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
14
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
15
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
下载PDF
CLASSIFICATION OF SKIN AUTOFLUORESCENCE SPECTRUM USING SUPPORT VECTOR MACHINE IN TYPE 2 DIABETES SCREENING 被引量:1
16
作者 YUANZHI ZHANG LING ZHU +4 位作者 YIKUN WANG LONG ZHANG SHANDONG YE YONG LIU GONG ZHANG 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2013年第4期42-48,共7页
Advanced glycation end products(AGEs)are a complex and heterogencous group of compounds that have been implicated in diabetes related complfcations.Sk in autofluorescence was recently introduced as an altemative tool ... Advanced glycation end products(AGEs)are a complex and heterogencous group of compounds that have been implicated in diabetes related complfcations.Sk in autofluorescence was recently introduced as an altemative tool for skin AGEs accumulation assessment in diabetes.Sucossful optical diagnosis of diabetes requires a rapid and accurate classification algorithm.In order to improve the performance of noninvasive and optical diagnosis of type 2 diabetes,support vector machines(SVM)algorithm was implemented for the clasification of skin autofluorescence from diabetics and control subjects.Cross-validation and grid optimization methods were employed to calculate the optimal parameters that ma ximize classification accuracy.Classification model was set up according to the training set and then veri fied by the testing set.The results show that radical basis fiunction is the best choice in the four common kernels in SVM.Moreover,a diagnostic accuracy of 82.61%,a sensitivity of 69.57%,and a specificity of 95.65%for discriminating diabetics from control subjects were achieved using a mixed kemel function,which is based on liner kernel function and radical basis function.In comparison with fasting plasma glucose and HbAue test,the clasifcation method of skin autofuorescence spectrum based on SVM shows great potential in screening of diabetes. 展开更多
关键词 Skin autofuorescence support vector machines algorithm type 2 diabetes noninvasive screening
下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
17
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
Speech Analysis for Diagnosis of Parkinson’s Disease Using Genetic Algorithm and Support Vector Machine 被引量:1
18
作者 Mohammad Shahbakhi Danial Taheri Far Ehsan Tahami 《Journal of Biomedical Science and Engineering》 2014年第4期147-156,共10页
Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, in... Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5). 展开更多
关键词 Parkinson’s Disease SPEECH Analysis GENETIC algorithm support vector machine
下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
19
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
下载PDF
Blind source separation algorithm based on support vector machines 被引量:1
20
作者 HE Xuan-sen HU Bo-ping 《通讯和计算机(中英文版)》 2008年第11期7-12,共6页
关键词 通信技术 盲源分离算法 计算方法 径向基函数 概率密度函数
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部