Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay caref...Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay careful attention to its equipment design and thedevelopment of process techniques. The present status of research and development of micro EDMequipment and process techniques is overviewed. A micro electro discharge machine incorporated withan inchworm type of micro feed mechanism is introduced, and a micro electro discharge machine fordrilling micro holes suitable to industrial use is also introduced. Some of the machiningexperiments carried out on the micro EDM prototypes are shown and the feasibility of the micro EDMtechnology to practical use is discussed.展开更多
Direct current and pulse plating of copper-zirconium diboride (ZrB2) composites were studied and the effects of current density (DC) and pulse duty cycle (PC) on the EDM performance of the composites were invest...Direct current and pulse plating of copper-zirconium diboride (ZrB2) composites were studied and the effects of current density (DC) and pulse duty cycle (PC) on the EDM performance of the composites were investigated. With increasing current density, the effect of grain refinement on the electro-discharge machining (EDM) performance of the composites compensates that of the decrease of ZrB2 content in the composites, which improves the spark-resistance of the material. Under the same average current density and other experiment conditions, a lower duty cycle yields better EDM performance probably because more ZrB2 particles are incorporated in the composites in this condition. However, at a still lower duty cycle (10%), the particle agglomeration and the microcracks of the copper matrix occur, which considerably deteriorate the spark-resistance of the composites.展开更多
文摘Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay careful attention to its equipment design and thedevelopment of process techniques. The present status of research and development of micro EDMequipment and process techniques is overviewed. A micro electro discharge machine incorporated withan inchworm type of micro feed mechanism is introduced, and a micro electro discharge machine fordrilling micro holes suitable to industrial use is also introduced. Some of the machiningexperiments carried out on the micro EDM prototypes are shown and the feasibility of the micro EDMtechnology to practical use is discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No. 59935110)the Science Founda-tion of Liaoning Province, China (No. 20062183).
文摘Direct current and pulse plating of copper-zirconium diboride (ZrB2) composites were studied and the effects of current density (DC) and pulse duty cycle (PC) on the EDM performance of the composites were investigated. With increasing current density, the effect of grain refinement on the electro-discharge machining (EDM) performance of the composites compensates that of the decrease of ZrB2 content in the composites, which improves the spark-resistance of the material. Under the same average current density and other experiment conditions, a lower duty cycle yields better EDM performance probably because more ZrB2 particles are incorporated in the composites in this condition. However, at a still lower duty cycle (10%), the particle agglomeration and the microcracks of the copper matrix occur, which considerably deteriorate the spark-resistance of the composites.