期刊文献+
共找到528篇文章
< 1 2 27 >
每页显示 20 50 100
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:11
1
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
下载PDF
Estimators of Linear Regression Model and Prediction under Some Assumptions Violation
2
作者 Kayode Ayinde Emmanuel O. Apata Oluwayemisi O. Alaba 《Open Journal of Statistics》 2012年第5期534-546,共13页
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not... The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49). 展开更多
关键词 prediction ESTIMATORS linear regression model Autocorrelated Error TERMS CORRELATED Stochastic NORMAL Regressors
下载PDF
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
3
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
4
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 linear model Mean Squared prediction Error Final prediction Error Generalized Cross Validation Least Squares Ridge regression
下载PDF
Application of Grey System GM (1,1) model and unary linear regression model in coal consumption of Jilin Province 被引量:1
5
作者 TIAN Songlin LU Laijun 《Global Geology》 2015年第1期26-31,共6页
The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption... The data on the coal production and consumption in Jilin Province for the last ten years were collected,and the Grey System GM( 1,1) model and unary linear regression model were applied to predict the coal consumption of Jilin Production in 2014 and 2015. Through calculation,the predictive value on the coal consumption of Jilin Province was attained,namely consumption of 2014 is 114. 84 × 106 t and of 2015 is 117. 98 ×106t,respectively. Analysis of error data indicated that the predicted accuracy of Grey System GM( 1,1) model on the coal consumption in Jilin Province improved 0. 21% in comparison to unary linear regression model. 展开更多
关键词 Grey System GM 1 1 model unary linear regression model model test prediction coal con-sumption Jilin Province
下载PDF
Prediction and driving factors of forest fire occurrence in Jilin Province,China
6
作者 Bo Gao Yanlong Shan +4 位作者 Xiangyu Liu Sainan Yin Bo Yu Chenxi Cui Lili Cao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期58-71,共14页
Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have dev... Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar. 展开更多
关键词 Forest fire Occurrence prediction Forest fire driving factors Generalized linear regression models Machine learning models
下载PDF
Analysis of radar fault prediction based on combined model 被引量:1
7
作者 邵延君 马春茂 潘宏侠 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期44-47,共4页
Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantag... Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantage of prediction information provided by the two models and improves the prediction precision.Finally,this model is introduced to predict the system fault time according to the output voltages of a certain type of radar transmitter. 展开更多
关键词 grey linear regression model filtting radar fault prediction
下载PDF
The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
8
作者 Yun Bao YAO Yu Tan LÜ +2 位作者 Chao LU Wei WANG Xue Jun WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1244-1272,共29页
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to... In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model. 展开更多
关键词 β)-mixing random variables partial linear regression model least squares estimator CONSISTENCY
原文传递
Tunnelling performance prediction of cantilever boring machine in sedimentary hard-rock tunnel using deep belief network 被引量:2
9
作者 SONG Zhan-ping CHENG Yun +1 位作者 ZHANG Ze-kun YANG Teng-tian 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2029-2040,共12页
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in... Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel. 展开更多
关键词 Urban metro tunnel Cantilever boring machine Hard rock tunnel Performance prediction model linear regression Deep belief network
下载PDF
Predictor Variables Influencing Visibility Prediction Based on Elevation and Its Range for Improving Traffic Operations and Safety
10
作者 Ajinkya Sadashiv Mane Srinivas Subrahmanyam Pulugurtha +1 位作者 Venkata Ramana Duddu Christopher Michael Godfrey 《Journal of Transportation Technologies》 2022年第3期439-452,共14页
Low visibility condition hinders both air traffic and road traffic operations. Accurate forecasting of visibility condition helps aircraft operators and travelers to make better decisions and improve their safety. It ... Low visibility condition hinders both air traffic and road traffic operations. Accurate forecasting of visibility condition helps aircraft operators and travelers to make better decisions and improve their safety. It is, therefore, essential to investigate and identify the predictor variables that could influence and help predict visibility. The objective of this study is to identify the predictor variables that influence visibility. Four years of surface weather observations, from January 2011 to December 2014, were collected from the weather stations located in and around the state of North Carolina, USA for the model development. Ordinary least squares (OLS) and weighted least squares (WLS) regression models were developed for different visibility and elevation ranges. The results indicate that elevation, cloud cover, and precipitation are negatively associated with the visibility in visibility less than 15,000 m model. The elevation, cloud cover and the presence of water bodies within the vicinity play an important role in the visibility less than 2000 m model. The chances of low visibility condition are higher between six to twelve hours after the rainfall when compared to the first six hours after the rainfall. The results from this study help to understand the influence of predictor variables that should be dealt with to improve the traffic operations and safety concerning the visibility near the airports/road transportation network. 展开更多
关键词 VISIBILITY prediction Weather Station linear regression model ELEVATION
下载PDF
Prediction of Water Table Based on General Regression Neural Network
11
作者 GUAN Shuai QIAN Cheng 《科技视界》 2017年第35期56-57,共2页
Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neu... Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model. 展开更多
关键词 GENERAL regression NEURAL network Water TABLE prediction INDEX model linear regression
下载PDF
Movie Score Prediction Model Based on Movie Plots
12
作者 Hui Xie Haomeng Wang +1 位作者 Chen Zhao Zhe Wang 《国际计算机前沿大会会议论文集》 2019年第2期633-634,共2页
With the rapid development of the movie industry, it is vital to evaluate and predict a movie’s quality. In this paper, a movie score prediction model is proposed based on the movie plots. Movie data was processed wi... With the rapid development of the movie industry, it is vital to evaluate and predict a movie’s quality. In this paper, a movie score prediction model is proposed based on the movie plots. Movie data was processed with the word2vec method, and the linear regression model and back propagation neural network algorithm were employed to establish the movie score prediction model. The high-quality classic movie plots of high-scoring movies summed up by big data contributed to a high synthesis of the wonderful content of the film. Experimental results show that it is effective in terms of movie evaluation and prediction, and helpful in understanding people’s preferences for movie plots. 展开更多
关键词 MOVIE BRIDGE PLOT MOVIE SCORE prediction linear regression model BACK propagation neural network
下载PDF
芙蓉李果实成熟期间的综合品质评价指标筛选与表观预测模型构建
13
作者 周丹蓉 林炎娟 +1 位作者 方智振 叶新福 《食品安全质量检测学报》 CAS 2024年第12期210-219,共10页
目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3... 目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。 展开更多
关键词 芙蓉李 成熟 品质指标 绝对因子分析-多元线性回归分析 表观预测模型
下载PDF
基于GPRS无线通讯技术的自动化灌溉系统设计
14
作者 赵转莉 高玲 《农机化研究》 北大核心 2024年第12期184-188,共5页
针对传统的大水漫灌等灌溉方式灌水不均、容易造成农作物病害或涝死、浪费水资源和人工成本较高的问题,基于GPRS无线通讯技术对自动化灌溉系统进行了设计。为了获取有效的灌溉数据,同时能够对数据进行统计、分析和预测,设计了自动灌溉... 针对传统的大水漫灌等灌溉方式灌水不均、容易造成农作物病害或涝死、浪费水资源和人工成本较高的问题,基于GPRS无线通讯技术对自动化灌溉系统进行了设计。为了获取有效的灌溉数据,同时能够对数据进行统计、分析和预测,设计了自动灌溉数据信息的预处理方法,并采用多元线性回归预测模型对灌溉数据进行预测。为了验证该自动化灌溉系统的性能,对其进行了数据采集试验和灌溉预测试验,结果表明:系统对灌溉数据监测和预测的准确率均较高。 展开更多
关键词 自动化灌溉系统 RPRS无线通讯技术 预处理 多元线性回归预测模型
下载PDF
基于LSTM的多因素石灰窑煅烧带温度预测研究
15
作者 温后珍 栾仪广 +2 位作者 孟碧霞 卞庆舟 陆建明 《化工自动化及仪表》 CAS 2024年第5期864-871,906,共9页
针对石灰窑煅烧过程易出现燃烧不平衡的问题以及石灰窑煅烧系统的滞后性,提出了大数据分析+神经网络的解决方案。利用大数据分析对石灰窑多源历史数据进行数据融合插补,采用多元线性回归方程分析空间因素对温度的影响,通过时间滑窗提取... 针对石灰窑煅烧过程易出现燃烧不平衡的问题以及石灰窑煅烧系统的滞后性,提出了大数据分析+神经网络的解决方案。利用大数据分析对石灰窑多源历史数据进行数据融合插补,采用多元线性回归方程分析空间因素对温度的影响,通过时间滑窗提取特征,在此基础上利用长短期记忆神经网络(LSTM)算法构建多因素模型,并采用自适应运动估计算法进行优化。实验结果表明:较单因素LSTM模型,多因素LSTM模型有效提高了石灰窑温度预测精度,现场可根据预测值提前调整工艺参数,实现了石灰窑局部温度预测。 展开更多
关键词 温度预测 长短期记忆神经网络 石灰窑 多元线性回归 多因素 自适应运动估计算法
下载PDF
微胶囊相变材料改良粉砂土的导热系数及预测模型
16
作者 唐少容 殷磊 +1 位作者 杨强 柯德秀 《中国粉体技术》 CAS CSCD 2024年第3期112-123,共12页
【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对... 【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对mPCM改良粉砂土进行导热系数实验和内部结构表征;采用多元线性回归和支持向量机(support vector machine,SVM)方法分别建立mPCM改良粉砂土的导热系数预测模型。【结果】mPCM改良粉砂土导热系数与含水率、干密度、mPCM掺量有关,且受冰水相对含量、冰水相变潜热、mPCM相变潜热和mPCM填充密实作用的影响,具有明显的温度效应;mPCM改良粉砂土导热系数的变化与实验温度和mPCM相变温度有关,可分为快速降低、缓慢降低和逐步上升3个阶段;多元线性回归和SVM模型均能较好地拟合预测mPCM改良粉砂土的导热系数,但SVM模型更适用于表征mPCM改良粉砂土导热系数各影响因素间的非线性关系。【结论】mPCM改良粉砂土的导热系数提高能够有效调控渠基土温度场,减轻渠道冻害,且SVM模型能更加准确地进行导热系数预测。 展开更多
关键词 微胶囊相变材料 粉砂土 导热系数 预测模型 多元线性回归 支持向量机
下载PDF
计及风力发电机转速安全约束的DFIG一次调频模型预测控制策略
17
作者 周涛 张锋杨 +2 位作者 徐妍 王亚伦 纪子洋 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期155-164,共10页
针对传统方法控制双馈感应发电机(DFIG)的调频效果过于依赖参数整定的问题,该文提出了一种基于模型预测控制(MPC),计及转速安全约束的风力发电机参与一次调频控制策略。该方法结合风力发电机动力学模型与频率响应模型建立预测模型,通过... 针对传统方法控制双馈感应发电机(DFIG)的调频效果过于依赖参数整定的问题,该文提出了一种基于模型预测控制(MPC),计及转速安全约束的风力发电机参与一次调频控制策略。该方法结合风力发电机动力学模型与频率响应模型建立预测模型,通过线性回归方法变参考值将风力发电机转速的稳定性纳入考虑。相较于虚拟惯性控制等方法将系统频率偏差与转子动能直接关联,该文方法通过建立全新的预测模型,实时统筹考虑整个系统的状态信息,无需反复调整参数,在考虑转速安全性的同时兼顾全局性能。最后,通过实际算例分析验证了该文调频策略的有效性以及相对现有方法的优越性。 展开更多
关键词 双馈感应发电机 一次调频 频率响应模型 模型预测控制 转子动能控制 虚拟惯性控制 转速安全 线性回归
下载PDF
改进GM(1,1)-ARIMA-LR模型天然气产量预测研究 被引量:1
18
作者 林文辉 杜彦炜 赵鹏 《西安工业大学学报》 CAS 2024年第1期32-40,共9页
为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过... 为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过去预测误差对单个模型分别进行动态调整,再建立目标规划模型对各模型进行动态加权。实证结果表明,改进GM(1,1)-ARIMA-LR模型能够更好地提取时间序列的长短时依赖关系,与其它的主流模型相比,其预测精度更高。对近5年的天然气产量进行一步、五步与八步预测,GM(1,1)-ARIMA-LR集成模型预测误差分别为1.187%、3.129%、9.855%。本文运用该模型对2023-2030年中国天然气产量进行预测。 展开更多
关键词 天然气产量 ARIMA模型 灰色GM(1 1)模型 线性回归 多步预测
下载PDF
基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测 被引量:3
19
作者 刘子玲 谢如鹤 +2 位作者 廖晶 何佳雯 罗湖桥 《包装工程》 CAS 北大核心 2024年第3期243-250,共8页
目的通过对不同预测方法的误差进行对比研究,选取预测精度较高的方法,促进部门科学化决策。方法从农产品供给、社会经济水平、冷链物流保障、居民规模与消费能力四大维度选取15个指标来构建影响因素指标体系,对影响因素与冷链物流需求... 目的通过对不同预测方法的误差进行对比研究,选取预测精度较高的方法,促进部门科学化决策。方法从农产品供给、社会经济水平、冷链物流保障、居民规模与消费能力四大维度选取15个指标来构建影响因素指标体系,对影响因素与冷链物流需求进行灰色关联度分析。采用GM(1,1)、GM(1,6)与主成分-多元回归线性模型对果蔬类生鲜农产品冷链物流需求进行预测。结果GM(1,1)预测模型、GM(1,6)预测模型、主成分-多元回归线性预测模型的预测误差分别为2.97%、1.70%、2.53%。结论GM(1,6)预测模型预测精度最高,该模型适用于中短期的冷链物流需求预测,具有较高的应用价值。 展开更多
关键词 果蔬类生鲜农产品 灰色预测模型 主成分-多元回归线性 需求预测
下载PDF
猪胴体重在线分级预测线性回归模型研究
20
作者 陈鲁晟 陈祺祥 +3 位作者 陈玉仑 王胜 李毅念 李春保 《南京农业大学学报》 CAS CSCD 北大核心 2024年第4期803-808,共6页
[目的]针对国内大多数屠宰企业仍通过人工测量猪胴体背膘厚度,再结合胴体重对其进行分级,存在劳动强度大、作业效率低、人畜交叉污染风险高等问题,本文旨在建立猪胴体重预测模型,以便利用图像处理等技术获取模型中的相关参数,进而获得... [目的]针对国内大多数屠宰企业仍通过人工测量猪胴体背膘厚度,再结合胴体重对其进行分级,存在劳动强度大、作业效率低、人畜交叉污染风险高等问题,本文旨在建立猪胴体重预测模型,以便利用图像处理等技术获取模型中的相关参数,进而获得胴体重。[方法]在14:00—15:00、15:20—16:20、16:30—17:30三个时段内,随机选取按照标准化工艺屠宰后15 min左右、胴体重50~90 kg的猪胴体60头,在完成各试样前腿处横长(L_(f))、1/2处横长(L_( 1/2))、后腿处横长(L_(r))、1/2处背膘厚度(t_(1/2))、胴体直长(L_(t))及胴体重(w)等参数测定的基础上,建立不同的胴体重预测模型并进行优化及准确率验证。[结果]采用横长加权均值(L_(e))代替背膘厚度,与直长建立的胴体重预测模型为w=4.05L_(e)+0.45 L_(t)-116.32,其决定系数由0.48提高到0.96(P=0.01),预测准确率最高达94.16%。[结论]采用横长加权均值减小了误差,建立的猪胴体重预测模型准确性较其他模型高。 展开更多
关键词 猪胴体重 特征参数 预测 线性回归 模型
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部