The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirm...The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity.展开更多
Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction con...Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction conditions.Based on the comprehension of the dynamic evolution,this study presents an efficient strategy to alleviate the agglomeration of In_(2)O_(3)nanoparticles by the surface decoration with highly dispersed silica species(SiO_(x)).Various structural characterizations combined with density functional theory calculations demonstrated that the sintering resulted from the over-reduction,while the enhanced stability originated from the anchoring effect of highly stable In-OSi bonds,which hinders the substantial formation of metallic In(In^(0))and the subsequent agglomeration.0.6Si/In_(2)O_(3)exhibited CO_(2)conversion rate of10.0 mmol g^(-1)h^(-1)at steady state vs.3.5 mmol g^(-1)h^(-1)on In_(2)O_(3)in CO_(2)hydrogenation.Enhanced steady-state activity was also achieved on Pd-modified catalysts.Compared to the traditional Pd/In_(2)O_(3)catalyst,the methanol production rate of Pd catalyst supported on 0.6Si/In_(2)O_(3)was enhanced by 23%,showing the potential of In_(2)O_(3)modified by SiO_(x)in serving as a platform material.This work provides a promising method to design new In_(2)O_(3)-based catalysts with improved activity and stability in CO_(2)hydrogenation.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
利用可再生的电能将CO_(2)还原为高附加值的化学品和燃料,对于缓解温室效应并实现碳中和具有重要的意义。开发了一种简单有效的方法制备非金属P元素掺杂的In_(2)O_(3)纳米颗粒,并将其用于电催化CO_(2)还原制甲酸盐。在H型电解池中,在-1....利用可再生的电能将CO_(2)还原为高附加值的化学品和燃料,对于缓解温室效应并实现碳中和具有重要的意义。开发了一种简单有效的方法制备非金属P元素掺杂的In_(2)O_(3)纳米颗粒,并将其用于电催化CO_(2)还原制甲酸盐。在H型电解池中,在-1.45 V vs.RHE电位下,P掺杂的In_(2)O_(3)纳米催化剂的产甲酸法拉第效率达到88.2%,同时具有优异的稳定性。进一步的实验分析和理论研究表明,掺杂在In_(2)O_(3)晶格中的P元素显著促进了CO_(2)分子的吸附和活化,降低了形成*HCOO中间体的吉布斯自由能,同时加强了对*HCOO的吸附作用,最终促进了甲酸盐的合成。阐明了非金属元素P掺杂对提升CO_(2)还原反应性能的分子机制,同时也为其他金属氧化物基的高性能电催化剂的设计提供了一种可行的策略。展开更多
锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点,但在电化学循环过程中不可逆相变、锰的溶解和电极/电解质界面不稳定导致其在小电流密度、深度放电条件下的循环性能差.针对以上问题,合成了三维(3D)多孔MnOx立方盒子,并在其...锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点,但在电化学循环过程中不可逆相变、锰的溶解和电极/电解质界面不稳定导致其在小电流密度、深度放电条件下的循环性能差.针对以上问题,合成了三维(3D)多孔MnOx立方盒子,并在其表面包覆In_(2)O_(3)层,获得3D多孔MnO_(x)@In_(2)O_(3)立方盒子.结果显示,MnO_(x)@In_(2)O_(3)立方盒子具有大量孔径约10 nm左右的孔,有利于H^(+)和Zn^(2+)的快速传输;In2O3包覆层均匀包覆于3D多孔MnO_(x)立方盒子的孔壁上,有利于抑制MnO_(x)在电化学循环过程中的不可逆相变和锰的溶解,稳定电极/电解质界面.电化学测试结果表明,该3D多孔MnO_(x)@In_(2)O_(3)电极在0.3 A/g的小电流密度、深度放电条件下能稳定循环400次以上,容量保持260 m A·h/g;在1.8 A/g电流密度下可稳定循环4000次以上,容量保持81m A·h/g;即使在高电流密度6.0 A/g下仍保持73.4 m A·h/g的高可逆容量.恒电流间隙滴定(GITT)和循环伏安测试结果表明,3D多孔MnO_(x)@In_(2)O_(3)电极比3D多孔MnO_(x)具有更高的离子扩散速率,有利于提升其高倍率容量.电化学阻抗谱结果表明,3D多孔MnO_(x)@In_(2)O_(3)电极具有比3D多孔MnO_(x)更稳定的电极/电解质界面,有利于提升其循环寿命.2000次循环后的扫描电子显微镜(SEM)结果表明,MnO_(x)@In_(2)O_(3)电极表面仍分布少量In_(2)O_(3),以确保电极/电解质界面和循环的稳定性.展开更多
基金supported by the National Natural Science Foundation of China(22138009)the Fundamental Research Funds for the Central Universities of China。
文摘The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity.
基金financially supported by the National Natural Science Foundation of China(22172013)the Special Project for Key Research and Development Program of Xinjiang Autonomous Region(2022B01033-3)+3 种基金the Liaoning Revitalization Talent Program(XLYC2008032 and XLYC2203126)the Fundamental Research Funds for the Central Universities(DUT22LK24,DUT22QN207 and DUT22LAB602)the CUHK Research Startup Fund(No.#4930981)financial support from Catalyst:Seeding funding(CSG-VUW2201)provided by the New Zealand Ministry of Business,Innovation and Employment and administered by the Royal Society Aparangi。
文摘Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction conditions.Based on the comprehension of the dynamic evolution,this study presents an efficient strategy to alleviate the agglomeration of In_(2)O_(3)nanoparticles by the surface decoration with highly dispersed silica species(SiO_(x)).Various structural characterizations combined with density functional theory calculations demonstrated that the sintering resulted from the over-reduction,while the enhanced stability originated from the anchoring effect of highly stable In-OSi bonds,which hinders the substantial formation of metallic In(In^(0))and the subsequent agglomeration.0.6Si/In_(2)O_(3)exhibited CO_(2)conversion rate of10.0 mmol g^(-1)h^(-1)at steady state vs.3.5 mmol g^(-1)h^(-1)on In_(2)O_(3)in CO_(2)hydrogenation.Enhanced steady-state activity was also achieved on Pd-modified catalysts.Compared to the traditional Pd/In_(2)O_(3)catalyst,the methanol production rate of Pd catalyst supported on 0.6Si/In_(2)O_(3)was enhanced by 23%,showing the potential of In_(2)O_(3)modified by SiO_(x)in serving as a platform material.This work provides a promising method to design new In_(2)O_(3)-based catalysts with improved activity and stability in CO_(2)hydrogenation.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
文摘利用可再生的电能将CO_(2)还原为高附加值的化学品和燃料,对于缓解温室效应并实现碳中和具有重要的意义。开发了一种简单有效的方法制备非金属P元素掺杂的In_(2)O_(3)纳米颗粒,并将其用于电催化CO_(2)还原制甲酸盐。在H型电解池中,在-1.45 V vs.RHE电位下,P掺杂的In_(2)O_(3)纳米催化剂的产甲酸法拉第效率达到88.2%,同时具有优异的稳定性。进一步的实验分析和理论研究表明,掺杂在In_(2)O_(3)晶格中的P元素显著促进了CO_(2)分子的吸附和活化,降低了形成*HCOO中间体的吉布斯自由能,同时加强了对*HCOO的吸附作用,最终促进了甲酸盐的合成。阐明了非金属元素P掺杂对提升CO_(2)还原反应性能的分子机制,同时也为其他金属氧化物基的高性能电催化剂的设计提供了一种可行的策略。
文摘锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点,但在电化学循环过程中不可逆相变、锰的溶解和电极/电解质界面不稳定导致其在小电流密度、深度放电条件下的循环性能差.针对以上问题,合成了三维(3D)多孔MnOx立方盒子,并在其表面包覆In_(2)O_(3)层,获得3D多孔MnO_(x)@In_(2)O_(3)立方盒子.结果显示,MnO_(x)@In_(2)O_(3)立方盒子具有大量孔径约10 nm左右的孔,有利于H^(+)和Zn^(2+)的快速传输;In2O3包覆层均匀包覆于3D多孔MnO_(x)立方盒子的孔壁上,有利于抑制MnO_(x)在电化学循环过程中的不可逆相变和锰的溶解,稳定电极/电解质界面.电化学测试结果表明,该3D多孔MnO_(x)@In_(2)O_(3)电极在0.3 A/g的小电流密度、深度放电条件下能稳定循环400次以上,容量保持260 m A·h/g;在1.8 A/g电流密度下可稳定循环4000次以上,容量保持81m A·h/g;即使在高电流密度6.0 A/g下仍保持73.4 m A·h/g的高可逆容量.恒电流间隙滴定(GITT)和循环伏安测试结果表明,3D多孔MnO_(x)@In_(2)O_(3)电极比3D多孔MnO_(x)具有更高的离子扩散速率,有利于提升其高倍率容量.电化学阻抗谱结果表明,3D多孔MnO_(x)@In_(2)O_(3)电极具有比3D多孔MnO_(x)更稳定的电极/电解质界面,有利于提升其循环寿命.2000次循环后的扫描电子显微镜(SEM)结果表明,MnO_(x)@In_(2)O_(3)电极表面仍分布少量In_(2)O_(3),以确保电极/电解质界面和循环的稳定性.