期刊文献+
共找到595篇文章
< 1 2 30 >
每页显示 20 50 100
CRB:A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
1
作者 董晨 徐桂琼 孟蕾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期588-604,共17页
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea... The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time. 展开更多
关键词 online social networks rumor blocking competitive linear threshold model influence maximization
下载PDF
Effect of Online Social Networking on Emotional Status and Its Interaction with Offline Reality during the Early Stage of the COVID-19 Pandemic in China
2
作者 Xiaolin Lu Xiaolei Miao 《International Journal of Mental Health Promotion》 2023年第9期1041-1052,共12页
Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on u... Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on users’emotional status has become stronger than ever.This study examines the association between online social networking and Internet users’emotional status and how offline reality affects this relationship.Methods:The study utilizes cross-sectional online survey data(n=3004)and Baidu Migration big data from the first 3 months of the pandemic.Two dimensions of online networking are measured:social support and information sources.Results:First,individuals’online social support(β=0.16,p<0.05)and information sources(β=0.08,p<0.01)are both positively associated to their emotional status during the epidemic.Second,these positive associations are moderated by social status and provincial pandemic control interventions.With regards to the moderation effect of social status,the constructive impact of information sources on emotional well-being is more pronounced among individuals from vulnerable groups compared to those who are not.With regard to the moderation effect of provincial interventions,online social support has the potential to alleviate the adverse repercussions of high rates of confirmed COVID-19 cases and strict lockdown measures while simultaneously augmenting the favorable effects of recovery.Conclusion:The various dimensions of social networking exert distinct effects on emotional status through diverse mechanisms,all of which must be taken into account when designing and adapting pandemic-control interventions. 展开更多
关键词 COVID-19 emotional status online social networking social support information sources
下载PDF
Malicious Activities Prediction Over Online Social Networking Using Ensemble Model
3
作者 S.Sadhasivam P.Valarmathie K.Dinakaran 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期461-479,共19页
With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the us... With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model. 展开更多
关键词 online social network decision tree weighted measure clone attack predictive measures
下载PDF
Identification of Influential Users in Online Social Network: A Brief Overview
4
作者 Mahmuda Ferdous Md. Musfique Anwar 《Journal of Computer and Communications》 2023年第7期58-73,共16页
Information networks where users join a network, publish their own content, and create links to other users are called Online Social Networks (OSNs). Nowadays, OSNs have become one of the major platforms to promote bo... Information networks where users join a network, publish their own content, and create links to other users are called Online Social Networks (OSNs). Nowadays, OSNs have become one of the major platforms to promote both new and viral applications as well as disseminate information. Social network analysis is the study of these information networks that leads to uncovering patterns of interaction among the entities. In this regard, finding influential users in OSNs is very important as they play a key role in the success above phenomena. Various approaches exist to detect influential users in OSNs, starting from simply counting the immediate neighbors to more complex machine-learning and message-passing techniques. In this paper, we review the recent existing research works that focused on identifying influential users in OSNs. 展开更多
关键词 online social network Trending Topics social Influence Influential User
下载PDF
Modeling online social networks based on preferential linking 被引量:2
5
作者 胡海波 郭进利 陈骏 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期573-578,共6页
We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment.... We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro=mechanisms of network growth and the macrostructures of online social networks. 展开更多
关键词 online social network preferential linking MODEL power law
下载PDF
ED-SWE:Event detection based on scoring and word embedding in online social networks for the internet of people 被引量:1
6
作者 Xiang Sun Lu Liu +1 位作者 Ayodeji Ayorinde John Panneerselvam 《Digital Communications and Networks》 SCIE CSCD 2021年第4期559-569,共11页
Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now ... Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models. 展开更多
关键词 Internet of people Hyperlink-induced topic search Event detection online social networks
下载PDF
Spotted Hyena Optimizer with Deep Learning Driven Cybersecurity for Social Networks
7
作者 Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim +5 位作者 Heba G.Mohamed Lubna A.Alharbi Mohamed K.Nour Abdullah Mohamed Ahmed S.Almasoud Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2033-2047,共15页
Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech.Online provocation,abuses,and attacks are widely termed cyberbullying(CB).The massive quantity of use... Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech.Online provocation,abuses,and attacks are widely termed cyberbullying(CB).The massive quantity of user generated content makes it difficult to recognize CB.Current advancements in machine learning(ML),deep learning(DL),and natural language processing(NLP)tools enable to detect and classify CB in social networks.In this view,this study introduces a spotted hyena optimizer with deep learning driven cybersecurity(SHODLCS)model for OSN.The presented SHODLCS model intends to accomplish cybersecurity from the identification of CB in the OSN.For achieving this,the SHODLCS model involves data pre-processing and TF-IDF based feature extraction.In addition,the cascaded recurrent neural network(CRNN)model is applied for the identification and classification of CB.Finally,the SHO algorithm is exploited to optimally tune the hyperparameters involved in the CRNN model and thereby results in enhanced classifier performance.The experimental validation of the SHODLCS model on the benchmark dataset portrayed the better outcomes of the SHODLCS model over the recent approaches. 展开更多
关键词 CYBERSECURITY CYBERBULLYING online social network deep learning spotted hyena optimizer
下载PDF
A Personalized Search Model Using Online Social Network Data Based on a Holonic Multiagent System 被引量:2
8
作者 Meijia Wang Qingshan Li Yishuai Lin 《China Communications》 SCIE CSCD 2020年第2期176-205,共30页
Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the beha... Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search. 展开更多
关键词 personalized search online social network holonic multiagent system
下载PDF
Towards understanding bogus traffic service in online social networks
9
作者 Ping HE Xuhong ZHANG +2 位作者 Changting LIN Ting WANG Shouling JI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期415-431,共17页
Critical functionality and huge infuence of the hot trend/topic page(HTP)in microblogging sites have driven the creation of a new kind of underground service called the bogus traffic service(BTS).BTS provides a kind o... Critical functionality and huge infuence of the hot trend/topic page(HTP)in microblogging sites have driven the creation of a new kind of underground service called the bogus traffic service(BTS).BTS provides a kind of illegal service which hijacks the HTP by pushing the controlled topics into it for malicious customers with the goal of guiding public opinions.To hijack HTP,the agents of BTS maintain an army of black-market accounts called bogus trafic accounts(BTAs)and control BTAs to generate a burst of fake trafic by massively retweeting the tweets containing the customer desired topic(hashtag).Although this service has been extensively exploited by malicious customers,little has been done to understand it.In this paper,we conduct a systematic measurement study of the BTS.We first investigate and collect 125 BTS agents from a variety of sources and set up a honey pot account to capture BTAs from these agents.We then build a BTA detector that detects 162218 BTAs from Weibo,the largest Chinese microblogging site,with a precision of 94.5%.We further use them as a bridge to uncover 296916 topics that might be involved in bogus trafic.Finally,we uncover the operating mechanism from the perspectives of the attack cycle and the attack entity.The highlights of our findings include the temporal attack patterns and intelligent evasion tactics of the BTAs.These findings bring BTS into the spotlight.Our work will help in understanding and ultimately eliminating this threat. 展开更多
关键词 online social networks MEASUREMENT Bogus traffic Black market
原文传递
Analysis of the Characteristics and Model of Online Social Network Information Dissemination
10
作者 DANG Yan 《International English Education Research》 2016年第12期18-21,共4页
Online social network is increasingly showing a significant impact and role in many areas of social life. In the study of online social network related issues have become the consensus of the academic and industrial c... Online social network is increasingly showing a significant impact and role in many areas of social life. In the study of online social network related issues have become the consensus of the academic and industrial communities and the urgent need for. This paper mainly studies the problem of information dissemination in social network, the mode of communication, behavior, propagation paths and propagation characteristics are studied, and take the Tencent micro-blog as an example, based on the analysis of many examples, several main models and characteristics of information dissemination in social network platform. 展开更多
关键词 online social network information dissemination Information dissemination characteristic: Information dissemination model
下载PDF
Information Propagation with Retweet Probability on Online Social Network
11
作者 Xing Tang Yining Quan +2 位作者 Qiguang Miao Ruihong Hou Kai Deng 《国际计算机前沿大会会议论文集》 2015年第1期95-96,共2页
The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated b... The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated by information propagation. So how to model the information propagation cascade accurately has become a hot topic. In this paper, we firstly incorporate the retweet probability into the traditional propagation models. To find the accurate retweet probability, we introduce the logistic regression model for every user based on the extracted features. With the crawled real dataset, simulation is conducted on the real online social network and moreover some novel results have been obtained. The homogenous retweet probability in the original model has underestimated the speed of information propagation, despite the scale of information propagation is almost at the same level. Besides, the initial information poster is really important for a certain propagation, which enables us to make effective strategies to prevent epidemics of rumor on social network. 展开更多
关键词 retweet PROBABILITY online social network INFECTIOUS MODEL DIFFUSION MODEL LOGISTIC regression
下载PDF
Generalized Jaccard Similarity Based Recurrent DNN for Virtualizing Social Network Communities
12
作者 R.Gnanakumari P.Vijayalakshmi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2719-2730,共12页
In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.... In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.But the usual methods didn’t find the Suspicious Behaviour(SB)needed to make a VC.The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking(GJSBS-RDNNCR)Model addresses these issues.The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks(SN).In the GJSBS-RDNNCR model,the SN is given as an input at the input layer.After that,the User’s Behaviors(UB)are extracted in the first Hidden Layer(HL),and the Generalized Jaccard Similarity coefficient calculates the similarity value at the second HL based on the SB.In the third HL,the similarity values are examined,and SB tendency is classified using the Activation Function(AF)in the Output Layer(OL).Finally,the ranking process is performed with classified users in SN and their SB.Results analysis is performed with metrics such as Classification Accuracy(CA),Time Complexity(TC),and False Positive Rate(FPR).The experimental setup consid-ers 250 tweet users from the dataset to identify the SBs of users. 展开更多
关键词 online social networks deep learning misbehaviors recurrent network GJS
下载PDF
The Use of Social Networks in Curbing HIV in Higher Education Institutions: A Case Study of the University of Zambia
13
作者 Harrison Daka W. James Jacob +1 位作者 Paul Kakupa Kapambwe Mwelwa 《World Journal of AIDS》 2017年第2期122-137,共16页
The AIDS epidemic has affected every aspect of Zambian society and is recognized as the greatest public health challenge of the past 30 years. Nevertheless, education can generate hope in the face of the epidemic usin... The AIDS epidemic has affected every aspect of Zambian society and is recognized as the greatest public health challenge of the past 30 years. Nevertheless, education can generate hope in the face of the epidemic using different methods, including social networks. This article investigates the positive and negative impacts of social networks on the spread of HIV at the University of Zambia (UNZA). The research study included survey-based oral interviews with 280 UNZA students. During the course of the study, we realized that efforts have been and are being put in place at UNZA to use online social networks to spread news about HIV and AIDS and how to stop its transmission. Findings showed that most participants felt that social networks hastened the spread of the virus among social media users. Despite social networks having a few positive effects, the results of our study indicate that the negative effects far outweigh the positive effects. 展开更多
关键词 social networkING social Media Facebook online RELATIONSHIPS HIV Education
下载PDF
Visualizing Clashes and Alliances in Social Networks of Political Discussions
14
作者 Rafael Lage Tavares Mariano Pimentel Renata Mendes de Araujo 《Social Networking》 2014年第2期94-101,共8页
Political discussions are characterized by conflicts of interest, and decisions are made based on negotiations. In general, participants need to reinforce their opinions and influence other participants. In this conte... Political discussions are characterized by conflicts of interest, and decisions are made based on negotiations. In general, participants need to reinforce their opinions and influence other participants. In this context, it is important to know how allies and opponents are positioned, in order to understand the discussion dynamics and plan adequate actions. This paper suggests the use of social network visualizations to explicit oppositions and alliances in order to support the understanding and following of political discussions. A system which supports these visualizations was built. An experiment performed to test the proposed visualizations showed to which extent they can be more efficient in identifying information about clashes and alliances than an online discussion system can. 展开更多
关键词 social network VISUALIZATION online POLITICAL DISCUSSION Electronic PARTICIPATION
下载PDF
Sentiment Analysis on the Social Networks Using Stream Algorithms
15
作者 Nathan Aston Timothy Munson +3 位作者 Jacob Liddle Garrett Hartshaw Dane Livingston Wei Hu 《Journal of Data Analysis and Information Processing》 2014年第2期60-66,共7页
The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for id... The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment. 展开更多
关键词 Modified BALANCED WINNOW SENTIMENT Analysis TWITTER online social networks Feature Selection Data STREAMS
下载PDF
Analysis of Social Networks among Students in Abidjan City
16
作者 Aliou Bamba Aladji Kamagaté +1 位作者 Moussa Koivogui Douatia Koné 《Open Journal of Applied Sciences》 CAS 2022年第8期1339-1351,共13页
This paper investigates the social networks usage by students in Abidjan city, C&ocirc;te d’Ivoire. We focus on a descriptive or quantitative analysis to understand the motivations and how students make use of in... This paper investigates the social networks usage by students in Abidjan city, C&ocirc;te d’Ivoire. We focus on a descriptive or quantitative analysis to understand the motivations and how students make use of internet and social networks. More than six hundred forms were distributed to persons we have deemed as students. In return, we received more than 93% of the forms that have been processed. The study highlights the materials and the digital platforms that students used the most. The majority of the respondents reported to have access to the social networks in their mobile phones, with WhatsApp leading this application ranking, followed by Instagram, Facebook, YouTube, and Tik Tok. The survey shows that two third of our respondents are aged from 19 to 25 years old and almost half of the respondents spend daily 2 to 5 hours on digital platforms. The investigation also reveals that the main online activities are the e-commerce, chatting, information, and entertainment. The paper addresses also the online harassment of the students and it shows that more than one tenth of them have been victims of cyber-bullying. This study might be useful for governments, institutions, academia, individuals and professionals in order to communicate efficiently with a given population for a better use of social networks and to prevent students from harassment. 展开更多
关键词 social network social Media Applications network Structure View Status Structure View STATISTICS Digital Platforms online Harassment
下载PDF
UAV Online Path Planning Algorithm in a Low Altitude Dangerous Environment 被引量:15
17
作者 Naifeng Wen Lingling Zhao +1 位作者 Xiaohong Su Peijun Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第2期173-185,共13页
UAV online path-planning in a low altitude dangerous environment with dense obstacles, static threats (STs) and dynamic threats (DTs), is a complicated, dynamic, uncertain and real-time problem. We propose a novel met... UAV online path-planning in a low altitude dangerous environment with dense obstacles, static threats (STs) and dynamic threats (DTs), is a complicated, dynamic, uncertain and real-time problem. We propose a novel method to solve the problem to get a feasible and safe path. Firstly STs are modeled based on intuitionistic fuzzy set (IFS) to express the uncertainties in STs. The methods for ST assessment and synthesizing are presented. A reachability set (RS) estimator of DT is developed based on rapidly-exploring random tree (RRT) to predict the threat of DT. Secondly a subgoal selector is proposed and integrated into the planning system to decrease the cost of planning, accelerate the path searching and reduce threats on a path. Receding horizon (RH) is introduced to solve the online path planning problem in a dynamic and partially unknown environment. A local path planner is constructed by improving dynamic domain rapidly-exploring random tree (DDRRT) to deal with complex obstacles. RRT∗ is embedded into the planner to optimize paths. The results of Monte Carlo simulation comparing the traditional methods prove that our algorithm behaves well on online path planning with high successful penetration probability. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS FORESTRY Fuzzy sets Intelligent systems Monte Carlo methods Problem solving social networking (online)
下载PDF
Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks 被引量:5
18
作者 William Deitrick Wei Hu 《Journal of Data Analysis and Information Processing》 2013年第3期19-29,共11页
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from soci... The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset. 展开更多
关键词 COMMUNITY Detection SENTIMENT ANALYSIS TWITTER online social networks MODULARITY Community-Level SENTIMENT ANALYSIS
下载PDF
Modeling Reading and Replying Activities in a BBS Social Network 被引量:1
19
作者 Fei Ding Yun Liu Bo Shen Hui Cheng 《Journal of Electronic Science and Technology》 CAS 2010年第4期300-306,共7页
This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some u... This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some user activities distribute, and reveal several important features that might characterize user dynamics. We propose a method to model user activities in the BBS social network. The model could reproduce power-law and non-power-law distributions of user activities at the same time. Our results show that user reading and replying activities could be simulated through simple agent-based models. Specifically, manners of how the BBS server interacts with Internet users in the Web 2.0 application, how users organize their reading lists, and how user behavioral trait distributes are the important factors in the formation of activity patterns. 展开更多
关键词 Agent based modeling bulletin boardsystem data analysis online social network.
下载PDF
Enhanced Clustering Based OSN Privacy Preservation to Ensure k-Anonymity, t-Closeness, l-Diversity, and Balanced Privacy Utility 被引量:2
20
作者 Rupali Gangarde Amit Sharma Ambika Pawar 《Computers, Materials & Continua》 SCIE EI 2023年第4期2171-2190,共20页
Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, gua... Online Social Networks (OSN) sites allow end-users to share agreat deal of information, which may also contain sensitive information,that may be subject to commercial or non-commercial privacy attacks. Asa result, guaranteeing various levels of privacy is critical while publishingdata by OSNs. The clustering-based solutions proved an effective mechanismto achieve the privacy notions in OSNs. But fixed clustering limits theperformance and scalability. Data utility degrades with increased privacy,so balancing the privacy utility trade-off is an open research issue. Theresearch has proposed a novel privacy preservation model using the enhancedclustering mechanism to overcome this issue. The proposed model includesphases like pre-processing, enhanced clustering, and ensuring privacy preservation.The enhanced clustering algorithm is the second phase where authorsmodified the existing fixed k-means clustering using the threshold approach.The threshold value is determined based on the supplied OSN data of edges,nodes, and user attributes. Clusters are k-anonymized with multiple graphproperties by a novel one-pass algorithm. After achieving the k-anonymityof clusters, optimization was performed to achieve all privacy models, suchas k-anonymity, t-closeness, and l-diversity. The proposed privacy frameworkachieves privacy of all three network components, i.e., link, node, and userattributes, with improved utility. The authors compare the proposed techniqueto underlying methods using OSN Yelp and Facebook datasets. The proposedapproach outperformed the underlying state of art methods for Degree ofAnonymization, computational efficiency, and information loss. 展开更多
关键词 Enhanced clustering online social network K-ANONYMITY t-closeness l-diversity privacy preservation
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部