Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now ...Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.展开更多
Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To ...Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.展开更多
基金The work reported in this paper has been supported by UK-Jiangsu 20-20 World Class University Initiative programme.
文摘Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.
基金supported by the Teaching Research Major Projects of Anhui Province(2018jyxm1446)the Natural Scientific Project of Anhui Provincial Department of Education(KJ2019A0371)+1 种基金the Anhui Demonstration Experiment Training Center Project(2018sxzx58)the Demonstration Projects for Massive Open Online Course of Anhui Province(2018mooc278)。
文摘Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.