The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is prop...An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is proposed. The designed observer is used to estimate the state variables, i.e. controllable duty ratio and current components in d-q-o rotary reference frame. The convergence of the observer estimation error is analyzed with consideration of uncertain level variation of input voltage at direct current(DC) side and sufficient conditions are given to prove its practical stability. Experimental results are shown to confirm the effectiveness of the proposed observer.展开更多
Accuracy of the motor parameters is important in realizing high performance control of permanent magnet synchronous motor(PMSM).However,the inductance and resistance of motor winding vary with the change of temperatur...Accuracy of the motor parameters is important in realizing high performance control of permanent magnet synchronous motor(PMSM).However,the inductance and resistance of motor winding vary with the change of temperature,rotor position and current frequency.In this paper,a technology based on circuit model is introduced for realizing online identification of the parameter of PMSM.In the proposed method,a set of nonlinear equations containing the parameters to be identified is established.Considering that it is very difficult to obtain the analytical solution of a nonlinear system of equations,Newton iterative method is used for solving the equations.Both the simulation and testing results confirm the effectiveness of the method presented.展开更多
A method of damage identification for engineering structures based on ambient vibration is put forward, in which output data are used only. Firstly, it was identification of the statistic parameters to associate with ...A method of damage identification for engineering structures based on ambient vibration is put forward, in which output data are used only. Firstly, it was identification of the statistic parameters to associate with the exterior excitation for undamaged structures. Then it was detection and location of the structural damages for damaged structures. The ambient identification method includes a theoretical model and numerical method. The numerical experiment results show the method is precise and effective. This method may be used in health monitoring for bridges and architectures.展开更多
The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based...The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.展开更多
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo...Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.展开更多
The identification of aerodynamic parameters is accomplished through the test data of the dynamic movement of scaled aircraft models flying dynamically in wind tunnel,which can real-ize the accurate acquisition of the...The identification of aerodynamic parameters is accomplished through the test data of the dynamic movement of scaled aircraft models flying dynamically in wind tunnel,which can real-ize the accurate acquisition of the aerodynamic model of the aircraft in the preliminary stage for aircraft design,and it is of great significance for improving the efficiency of aircraft design.How-ever,the translational motion of the test model in the wind tunnel virtual flight is subject to con-straints that result in distinct flight dynamics compared to free flight.These constraints have implications for the accuracy of aerodynamic derivatives obtained through the identification of wind tunnel test data.With this issue in mind,the research studies the differences in longitudinal dynamic characteristics between unconstrained free flight and wind tunnel virtual flight,and inno-vatively proposes an online correction test based wind tunnel virtual flight test technique.The lon-gitudinal trajectory and velocity changes of the model are solved online by the aerodynamic forces measured during the test,and then the coupled relationship between aircraft translation and rota-tion is used to correct the model's pitch attitude motion online.For the first time,the problem of solving the data approximation for free flight has been solved,eliminating the difference between the dynamics of wind tunnel virtual flight and free flight,and improving the accuracy of the aero-dynamic derivative identification results.The experiment's findings show that accurate aerodynamic derivatives can be identified based on the online correction test data,and the observed behaviour of the identified motion model has similarities to that of the free flight motion model.展开更多
Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introdu...Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.展开更多
In this paper, the application of modified genetic algorithms (MGA) in the optimization of the ARX Model-based observer of the Pneumatic Artificial Muscle (PAM) manipulator is investigated. The new MGA algorithm is pr...In this paper, the application of modified genetic algorithms (MGA) in the optimization of the ARX Model-based observer of the Pneumatic Artificial Muscle (PAM) manipulator is investigated. The new MGA algorithm is proposed from the genetic algorithm with important additional strategies, and consequently yields a faster convergence and a more accurate search. Firstly, MGA-based identification method is used to identify the parameters of the nonlinear PAM manipulator described by an ARX model in the presence of white noise and this result will be validated by MGA and compared with the simple genetic algorithm (GA) and LMS (Least mean-squares) method. Secondly, the intrinsic features of the hysteresis as well as other nonlinear disturbances existing intuitively in the PAM system are estimated online by a Modified Recursive Least Square (MRLS) method in identification experiment. Finally, a highly efficient self-tuning control algorithm Minimum Variance Control (MVC) is taken for tracking the joint angle position trajectory of this PAM manipulator. Experiment results are included to demonstrate the excellent performance of the MGA algorithm in the NARX model-based MVC control system of the PAM system. These results can be applied to model, identify and control other highly nonlinear systems as well.展开更多
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金Project(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is proposed. The designed observer is used to estimate the state variables, i.e. controllable duty ratio and current components in d-q-o rotary reference frame. The convergence of the observer estimation error is analyzed with consideration of uncertain level variation of input voltage at direct current(DC) side and sufficient conditions are given to prove its practical stability. Experimental results are shown to confirm the effectiveness of the proposed observer.
文摘Accuracy of the motor parameters is important in realizing high performance control of permanent magnet synchronous motor(PMSM).However,the inductance and resistance of motor winding vary with the change of temperature,rotor position and current frequency.In this paper,a technology based on circuit model is introduced for realizing online identification of the parameter of PMSM.In the proposed method,a set of nonlinear equations containing the parameters to be identified is established.Considering that it is very difficult to obtain the analytical solution of a nonlinear system of equations,Newton iterative method is used for solving the equations.Both the simulation and testing results confirm the effectiveness of the method presented.
文摘A method of damage identification for engineering structures based on ambient vibration is put forward, in which output data are used only. Firstly, it was identification of the statistic parameters to associate with the exterior excitation for undamaged structures. Then it was detection and location of the structural damages for damaged structures. The ambient identification method includes a theoretical model and numerical method. The numerical experiment results show the method is precise and effective. This method may be used in health monitoring for bridges and architectures.
基金funded by the National Natural Science Foundation under grant No.62171420Natural Science Foundation of Shandong Province under grant No.ZR201910230031。
文摘The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.
基金This work was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.PA2022GDGP0032)National Natural Science Foundation of China(51907045).
文摘Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.
文摘The identification of aerodynamic parameters is accomplished through the test data of the dynamic movement of scaled aircraft models flying dynamically in wind tunnel,which can real-ize the accurate acquisition of the aerodynamic model of the aircraft in the preliminary stage for aircraft design,and it is of great significance for improving the efficiency of aircraft design.How-ever,the translational motion of the test model in the wind tunnel virtual flight is subject to con-straints that result in distinct flight dynamics compared to free flight.These constraints have implications for the accuracy of aerodynamic derivatives obtained through the identification of wind tunnel test data.With this issue in mind,the research studies the differences in longitudinal dynamic characteristics between unconstrained free flight and wind tunnel virtual flight,and inno-vatively proposes an online correction test based wind tunnel virtual flight test technique.The lon-gitudinal trajectory and velocity changes of the model are solved online by the aerodynamic forces measured during the test,and then the coupled relationship between aircraft translation and rota-tion is used to correct the model's pitch attitude motion online.For the first time,the problem of solving the data approximation for free flight has been solved,eliminating the difference between the dynamics of wind tunnel virtual flight and free flight,and improving the accuracy of the aero-dynamic derivative identification results.The experiment's findings show that accurate aerodynamic derivatives can be identified based on the online correction test data,and the observed behaviour of the identified motion model has similarities to that of the free flight motion model.
文摘Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.
文摘In this paper, the application of modified genetic algorithms (MGA) in the optimization of the ARX Model-based observer of the Pneumatic Artificial Muscle (PAM) manipulator is investigated. The new MGA algorithm is proposed from the genetic algorithm with important additional strategies, and consequently yields a faster convergence and a more accurate search. Firstly, MGA-based identification method is used to identify the parameters of the nonlinear PAM manipulator described by an ARX model in the presence of white noise and this result will be validated by MGA and compared with the simple genetic algorithm (GA) and LMS (Least mean-squares) method. Secondly, the intrinsic features of the hysteresis as well as other nonlinear disturbances existing intuitively in the PAM system are estimated online by a Modified Recursive Least Square (MRLS) method in identification experiment. Finally, a highly efficient self-tuning control algorithm Minimum Variance Control (MVC) is taken for tracking the joint angle position trajectory of this PAM manipulator. Experiment results are included to demonstrate the excellent performance of the MGA algorithm in the NARX model-based MVC control system of the PAM system. These results can be applied to model, identify and control other highly nonlinear systems as well.