期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Online Forum Post Opinion Classification Based on Tree Conditional Random Fields Model
1
作者 吴越 胡勇 何小海 《China Communications》 SCIE CSCD 2013年第8期125-136,共12页
There is a major defect when using the traditional topic-opinion model for post opinion classifications in an online forum discussion.The accuracy of the classification based on the topic-opinion model highly depends ... There is a major defect when using the traditional topic-opinion model for post opinion classifications in an online forum discussion.The accuracy of the classification based on the topic-opinion model highly depends on the observable topic-opinion features aiming at the subject,while a large number of posts do not have such features in a forum.Therefore,for the most part,the accuracy is less than 78%.To solve this problem,we propose a new method to identify post opinions based on the Tree Conditional Random Fields(T-CRFs)model.First,we select the topic-opinion features of the posts and associated opinion features between posts to construct the T-CRFs model,and then we use the T-CRFs model to label the opinions of the tree-structured posts under the same topic iteratively to reach a maximum joint probability.To reduce the training cost,we design a simplified tree diagram module and some feature templates.Experimental results suggest the proposed method costs less training time and improves the accuracy by 11%. 展开更多
关键词 T-CRF online forum post opinion classification
下载PDF
Online Intrusion Detection Mechanism Based on Model Migration in Intelligent Pumped Storage Power Stations 被引量:3
2
作者 Yue Zong Yuanlin Luo +5 位作者 Yuechao Wu Jiande Huang Bowen Yang Xiaoyu Kang Shumei Liu Yao Yu 《China Communications》 SCIE CSCD 2023年第4期368-381,共14页
With the continuous integration of new energy into the power grid,various new attacks continue to emerge and the feature distributions are constantly changing during the deployment of intelligent pumped storage power ... With the continuous integration of new energy into the power grid,various new attacks continue to emerge and the feature distributions are constantly changing during the deployment of intelligent pumped storage power stations.The intrusion detection model trained on the old data is hard to effectively identify new attacks,and it is difficult to update the intrusion detection model in time when lacking data.To solve this issue,by using model-based transfer learning methods,in this paper we propose a convolutional neural network(CNN)based transfer online sequential extreme learning machine(TOS-ELM)scheme to enable the online intrusion detection,which is called CNN-TOSELM in this paper.In our proposed scheme,we use pre-trained CNN to extract the characteristics of the target domain data as input,and then build online learning classifier TOS-ELM to transfer the parameter of the ELM classifier of the source domain.Experimental results show the proposed CNNTOSELM scheme can achieve better detection performance and extremely short model update time for intelligent pumped storage power stations. 展开更多
关键词 transfer learning intrusion detection online classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部