In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction, accounts, and customer contact based on the business process of online auction companies. For ea...In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction, accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example, analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.展开更多
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve...A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.展开更多
The Customized Online Aggregation & Summarization Tool for Environmental Rasters (COASTER) system (www.COASTERdata.net) was developed by Yellowstone Ecological Research Center (YERC) (www.yellowstoneresearch.org) ...The Customized Online Aggregation & Summarization Tool for Environmental Rasters (COASTER) system (www.COASTERdata.net) was developed by Yellowstone Ecological Research Center (YERC) (www.yellowstoneresearch.org) in response to the information needs of end-user communities interested in decision-support for natural resource management. The purpose of COASTER is to greatly simplify the process of creating predictor datasets for research exploring environmental impacts driven by climate change, land-use activities, disturbance, and invasive spread. COASTER achieves this goal by providing users with a web-based system for processing environmental (gridded, raster) datasets, using a set of standardized functions, to create output customized to meet their analytical needs. In doing so, COASTER effectively translates large and cumbersome datasets into user-specified information useful for parameterizing statistical models and for visualizing spatial and temporal patterns within environmental datasets. The COASTER system currently contains over 10 terabytes of climate data from several sources. These datasets have daily temporal resolutions, spatial resolutions ranging from 1km to 330km, and temporal extents ranging from 30 to 64 years (1948-2011). COASTER datasets are primarily limited to North America, but gridded datasets from other regions can easily be added to the system. Variables within the climatic datasets available on COASTER include metrics quantifying temperature, precipitation, shortwave radiation, vapor pressure deficit, humidity, and wind conditions. Notable features of COASTER include a conceptually simple yet flexible set of functions capable of producing a wide range of outputs, a design applicable to many types of raster datasets, and results formatted for seamless integration within most GIS and remote sensing software packages.展开更多
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly mane...The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.展开更多
In this paper, the system bgMath/OLAP for warehousing and online analytical processing bibliographic data is proposed. The implemented system can be useful for the users maintaining their electronic libraries with pub...In this paper, the system bgMath/OLAP for warehousing and online analytical processing bibliographic data is proposed. The implemented system can be useful for the users maintaining their electronic libraries with publications in order to monitoring, evaluating and comparing the scientific development of particular researchers, entire research groups, certain scientific fields and problems.展开更多
基金Supported by the National Natural Science Foundation of China (70471037)211 Project Foundation of Shanghai University (8011040506)
文摘In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction, accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example, analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.
基金supported by the National Natural Science Foundation of China (under grants 41874048,41790464,41790462).
文摘A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.
文摘The Customized Online Aggregation & Summarization Tool for Environmental Rasters (COASTER) system (www.COASTERdata.net) was developed by Yellowstone Ecological Research Center (YERC) (www.yellowstoneresearch.org) in response to the information needs of end-user communities interested in decision-support for natural resource management. The purpose of COASTER is to greatly simplify the process of creating predictor datasets for research exploring environmental impacts driven by climate change, land-use activities, disturbance, and invasive spread. COASTER achieves this goal by providing users with a web-based system for processing environmental (gridded, raster) datasets, using a set of standardized functions, to create output customized to meet their analytical needs. In doing so, COASTER effectively translates large and cumbersome datasets into user-specified information useful for parameterizing statistical models and for visualizing spatial and temporal patterns within environmental datasets. The COASTER system currently contains over 10 terabytes of climate data from several sources. These datasets have daily temporal resolutions, spatial resolutions ranging from 1km to 330km, and temporal extents ranging from 30 to 64 years (1948-2011). COASTER datasets are primarily limited to North America, but gridded datasets from other regions can easily be added to the system. Variables within the climatic datasets available on COASTER include metrics quantifying temperature, precipitation, shortwave radiation, vapor pressure deficit, humidity, and wind conditions. Notable features of COASTER include a conceptually simple yet flexible set of functions capable of producing a wide range of outputs, a design applicable to many types of raster datasets, and results formatted for seamless integration within most GIS and remote sensing software packages.
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
基金Project supported by the Technology Foundation for Basic Enhancement Plan,China (No.2021-JCJQ-JJ-0301)the National Major Research and Development Project of China (No.2018YFE0206500)+1 种基金the National Natural Science Foundation of China (No.62071140)the National Special for International Scientific and Technological Cooperation of China (No.2015DFR10220)。
文摘The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.
文摘In this paper, the system bgMath/OLAP for warehousing and online analytical processing bibliographic data is proposed. The implemented system can be useful for the users maintaining their electronic libraries with publications in order to monitoring, evaluating and comparing the scientific development of particular researchers, entire research groups, certain scientific fields and problems.