As location data are widely available to portable devices, trajectory tracking of moving objects has become an essential technology for most location-based services. To maintain such streaming data of location updates...As location data are widely available to portable devices, trajectory tracking of moving objects has become an essential technology for most location-based services. To maintain such streaming data of location updates from mobile clients, conventional approaches such as time-based regular location updating and distance-based location updating have been used. However, these methods suffer from the large amount of data, redundant location updates, and large trajectory estimation errors due to the varying speed of moving objects. In this paper, we propose a simple but efficient online trajectory data reduction method for portable devices. To solve the problems of redundancy and large estimation errors, the proposed algorithm computes trajectory errors and finds a recent location update that should be sent to the server to satisfy the user requirements. We evaluate the proposed algorithm with real GPS trajectory data consisting of 17 201 trajectories. The intensive simulation results prove that the proposed algorithm always meets the given user requirements and exhibits a data reduction ratio of greater than 87% when the acceptable trajectory error is greater than or equal to 10 meters.展开更多
基金supported by the Incheon National University Research Grant of Korea in 2011
文摘As location data are widely available to portable devices, trajectory tracking of moving objects has become an essential technology for most location-based services. To maintain such streaming data of location updates from mobile clients, conventional approaches such as time-based regular location updating and distance-based location updating have been used. However, these methods suffer from the large amount of data, redundant location updates, and large trajectory estimation errors due to the varying speed of moving objects. In this paper, we propose a simple but efficient online trajectory data reduction method for portable devices. To solve the problems of redundancy and large estimation errors, the proposed algorithm computes trajectory errors and finds a recent location update that should be sent to the server to satisfy the user requirements. We evaluate the proposed algorithm with real GPS trajectory data consisting of 17 201 trajectories. The intensive simulation results prove that the proposed algorithm always meets the given user requirements and exhibits a data reduction ratio of greater than 87% when the acceptable trajectory error is greater than or equal to 10 meters.