针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失...针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。展开更多
文摘针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。