To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, an...To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, and advanced aerosol microphysics is required. In this work, the global-through-urban WRF/Chem model (GU-WRF/Chem) implemented with the online emissions of marine isoprene and size-resolved marine POA is applied to examine such impacts. The net effect of these emissions was increased surface concentrations of isoprene and organic aerosols and decreased surfaced concentrations of hydroxyl radical and ozone over most marine regions. With the inclusion of these emissions, GU-WRF/Chem better predicted the surface concentrations of isoprene and organic aerosols and the aerosol number size distribution when compared to measurements in clean marine conditions.展开更多
文摘To realistically simulate the impacts of marine isoprene and primary organic aerosols (POA) on atmospheric chemistry, a unified model framework with online emissions, comprehensive treatment of gas-phase chemistry, and advanced aerosol microphysics is required. In this work, the global-through-urban WRF/Chem model (GU-WRF/Chem) implemented with the online emissions of marine isoprene and size-resolved marine POA is applied to examine such impacts. The net effect of these emissions was increased surface concentrations of isoprene and organic aerosols and decreased surfaced concentrations of hydroxyl radical and ozone over most marine regions. With the inclusion of these emissions, GU-WRF/Chem better predicted the surface concentrations of isoprene and organic aerosols and the aerosol number size distribution when compared to measurements in clean marine conditions.