The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generatio...The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generation of photonic crystal. The template provided void space for infiltration of liquid precursor composed of titanium butyloxide, barium acetate, ethanol, and acetic acid. The opal composite was hydrolyzed, dried, sintered by heating for completely removing PS spheres to form BaTiO3 photonic crystals with inverse opal structure. The PS spheres were replaced by air spheres, which interconnected each other through the windows on the BaTiO3 wall. So both the BaTiO3 wall and air void constitute continuous phases.展开更多
The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for...The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for infiltration of monomer precursor composed of acrylate acid, acrylamide and ammonium-persulfate, as well as microgel from the subsequent copolymerization. The sample was immersed in dimethylbenzene for completely removing PS spheres to form PAM inverse opal hydrogels (IOHPAM) or PAM/PAA inverse opal hydrogels (IOHPAM/PAA) photonic crystals. The PS spheres were replaced by air spheres, which interconnected each other through the windows. The study of responses to pH show that there are two peaks for both IOHPAM and IOHPAM/PAA films, but the IOHPAM/PAA peaks shift to higher pH, and the peaks are independent with the AA content.展开更多
文摘The colloidal crystal template or opal with a closed-packed face centered cubic (fcc) lattice, was prepared from monodisperse polystyrene (PS) spheres by gravity sedimentation. The template was used for the generation of photonic crystal. The template provided void space for infiltration of liquid precursor composed of titanium butyloxide, barium acetate, ethanol, and acetic acid. The opal composite was hydrolyzed, dried, sintered by heating for completely removing PS spheres to form BaTiO3 photonic crystals with inverse opal structure. The PS spheres were replaced by air spheres, which interconnected each other through the windows on the BaTiO3 wall. So both the BaTiO3 wall and air void constitute continuous phases.
基金supported by the National Natural Science Foundation of China(No.50473044).
文摘The colloidal crystal template or opal with a closed-packed face-centered cubic (fcc) lattice was prepared from monodisperse polystyrene (PS) spheres by vertical sedimentation. The template provided void space for infiltration of monomer precursor composed of acrylate acid, acrylamide and ammonium-persulfate, as well as microgel from the subsequent copolymerization. The sample was immersed in dimethylbenzene for completely removing PS spheres to form PAM inverse opal hydrogels (IOHPAM) or PAM/PAA inverse opal hydrogels (IOHPAM/PAA) photonic crystals. The PS spheres were replaced by air spheres, which interconnected each other through the windows. The study of responses to pH show that there are two peaks for both IOHPAM and IOHPAM/PAA films, but the IOHPAM/PAA peaks shift to higher pH, and the peaks are independent with the AA content.