The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w...The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.展开更多
Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized co...Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.展开更多
The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influ...The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.展开更多
The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and ban...The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).展开更多
The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering applica...The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.展开更多
Suspended vegetation in open channels such as natural river,lake,reservoir usually affect the flow structure,causing the change of the water environment,sediment transport,bed deformation.In order to study the water f...Suspended vegetation in open channels such as natural river,lake,reservoir usually affect the flow structure,causing the change of the water environment,sediment transport,bed deformation.In order to study the water flow behavior in curved open channels under the influence of suspended vegetation,experiments were conducted in a Ushaped flume with 180°bend where the suspended vegetation substituted by cylindrical glass rods were partially placed.The particle image velocimeter(PIV)system was employed to measure the flow velocities of various cases with different vegetation arrangements and roots length.Comparison and analysis were conducted for measured data,such as water level,velocity,head loss,Reynolds stress,and turbulence kinetic energy(TKE)to obtain certain general rules of water flow in open curved channels with suspended vegetation.It can be found from the measured data that the water level and the head loss in the vegetation area are closely related to the arrangements of the suspended vegetation.Furthermore,the drag force of the vegetation can not only lead to smaller increments of longitudinal TKE above the vegetation tail than that below it,but also lead to the flow velocities in vegetation area much smaller than areas without vegetation.In addition,suspended vegetation weakens the vortex strength near the water surface and increases the vortex strength below the vegetation tail,and the flow velocity in the vegetation area has a close relationship with the suspended vegetation length in the water.Therefore,it can be concluded that the reasonable arrangements of suspended vegetation group in curved open channel can protect the concave bank from being scoured,and protect the convex bank from being deposited.展开更多
Conventional methods for measuring local shear stress on the wetted perimeter of open channels are related to the measurement of the very low velocity close to the boundary.Measuring near-zero velocity values with hig...Conventional methods for measuring local shear stress on the wetted perimeter of open channels are related to the measurement of the very low velocity close to the boundary.Measuring near-zero velocity values with high fluctuations has always been a difficult task for fluid flow near solid boundaries.To solve the observation problems,a new model was developed to estimate the distribution of boundary shear stress from the velocity distribution in open channels with different cross-sectional shapes.To estimate the shear stress at a point on the wetted perimeter by the model,the velocity must be measured at a point with a known normal distance to the boundary.The experimental work of some other researchers on channels with various cross-sectional shapes,including rectangular,trapezoidal,partially full circular,and compound shapes,was used to evaluate the performance of the proposed model.Optimized exponent coefficients for the model were found using the multivariate Newton method with the minimum of the mean absolute percentage error(MAPE)between the model and experimental data as the objective function.Subsequently,the calculated shear stress distributions along the wetted perimeter were compared with the experimental data.The most important advantage of the proposed model is its inherent simplicity.The mean MAPE value for the seven selected cross-sections was 6.9%.The best results were found in the cross-sections with less discontinuity of the wetted perimeter,including the compound,trapezoidal,and partially full circular pipes.In contrast,for the rectangular cross-section with an angle between the bed and walls of 90°,MAPE increased due to the large discontinuities.展开更多
The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. Th...The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. The literature on the transport of molten metals in open channels is quite scarce. In this work, the uniform flow of pig iron and molten aluminum in rectangular open channels is studied. Specific energy curves are constructed and critical heights are analytically determined. The transition from subcritical to supercritical flow is analyzed as a function of the angle of inclination of the channel and the roughness of its walls. Manning’s equation is applied to the pig iron flow using data reported in the literature for molten aluminum. The need to correct the roughness coefficient for pig iron is observed in order to obtain results consistent with those previously reported.展开更多
Hypoxic pulmonary hypertension(HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries.The aim of specific therapies for hypoxic pulmo...Hypoxic pulmonary hypertension(HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries.The aim of specific therapies for hypoxic pulmonary hypertension is to reduce pulmonary vascular resistance,reverse pulmonary vascular remodeling,and thereby improving right ventricular function.Iptakalim,a lipophilic para-amino compound with a low molecular weight,has been demonstrated to be a new selective ATP-sensitive potassium(K ATP) channel opener via pharmacological,electrophysiological,biochemical studies,and receptor binding tests.In hypoxia-induced animal models,iptakalim decreases the elevated mean pressure in pulmonary arteries,and attenuates remodeling in the right ventricle,pulmonary arteries and airways.Furthermore,iptakalim has selective antihypertensive effects,selective vasorelaxation effects on smaller arteries,and protective effects on endothelial cells,but no effects on the central nervous,respiratory,digestive or endocrine systems at therapeutic dose.Our previous studies demonstrated that iptakalim inhibited the effects of endothelin-1,reduced the intracellular calcium concentration and inhibited the proliferation of pulmonary artery smooth muscle cells.Since iptakalim has been shown safe and effective in both experimental animal models and phase I clinical trials,it can be a potential candidate of HPH in the future.展开更多
With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, n...With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, namely [Cd3((R)-CIA)2(CH3CO2)_2(1.4-DIB)2(H2O)2]·x(Guest)(1-D) and [Cd3((S)-CIA)2(CH3CO2)2(1.4-DIB)2(H2O)2]·x(Guest)(1-L). They contain 1D interesting ladder-like Cd-(R)-CIA(3-) chains and exhibit SHG-active behavior and photoluminescent property.展开更多
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel opene...Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel openers(KCOs) have been proposed as potential neuroprotectants. Our previous studies demonstrated that K-ATP channels could regulate glutamate uptake activity in PC12 cells as well as in synaptosomes of rats. Since glutamate transporters(GluTs) of astrocytes play crucial roles in glutamate uptake and KATP channels are also expressed in astrocytes, the present study showed whether and how KATP channels regulated the function of GluTs in primary cultured astrocytes. The results showed that nonselective KCO pinacidil, selective mitochondrial KCO diazoxide, novel, and blood-brain barrier permeable KCO iptakalim could enhance glutamate uptake, except for the sarcolemmal KCO P1075. Moreover pinacidil, diazoxide, and iptakalim reversed the inhibition of glutamate uptake induced by 1-methyl-4-phenylpyridinium(MPP+). These potentiated effects were completely abolished by mitochondrial K-ATP blocker 5-hydroxydecanoate. Furthermore, either diazoxide or iptakalim could inhibit MPP+-induced elevation of reactive oxygen species (ROS) and phosphorylation of protein kinases C(PKC). These findings are the first to demonstrate that activation of K-ATP channel, especially mitochondrial K-ATP channel, improves the function of GluTs in astrocytes due to reducing ROS production and downregulating PKC phosphorylation. Therefore, the present study not only reveals a novel pharmacological profile of KCOs as regulators of GluTs, but also provides a new strategy for neuroprotection.展开更多
In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turb...In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid in open channel have been further proposed. The concepts of the density turbulence stress and the viscosity turbulence stress have been firstly presented in the paper.展开更多
A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which ...A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment: selecting an appropriate coefficient of an initial state or changing the memory degree of environments.展开更多
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics re...This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the ...A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the jump occurs and where its length is measured, so the data must be obtained with direct measurements in a laboratory and through empiric equations. This work presents the results of the generated hydraulic jumps and the measure of its length in a series of tests, where we input different flow rates in a transportable open channel hydraulic with a constant gate opening “a” and a slope of S = 0.0035, in the Engineering Faculty Research Centre of the Autonomous University of Chiapas. We also present the experimental method to generate a hydraulic jump, the measure of its length and a comparison with seven empirical equations, including the Sieñchi equation used in H-Canales, the most used software for hydraulic channels design in Latin America. The results show that the calculus of L with the proposed equation has a mean squared error (MSE) of 0.1337, a Bias of -0.0049, a model efficiency (ME) of 0.9991 and a determination coefficient (R2) of 0.9993 when compared with the experimental model. Meanwhile, the comparison of L calculated with the Sieñchi equation versus the experimental model resulted in a MSE of 0.1741, a bias of -0.0437, a ME of 0.9984 and a R2 of 0.9997. Both equations are highly recommended to estimate L in rectangular channels under the conditions presented in this paper, thus, the proposed equation can be applied if??y . Finally, it must be stated that we also proved that the Pavlosky equation is comparable in precision and accuracy concerning to proposed equation and Sieñchi equation.展开更多
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows...Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.展开更多
文摘The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.
文摘Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.
基金supported by the National Natural Science Foundation of China (Grants No.50879019,50909036,and 50879020)the Research Fund for the Doctoral Program of Higher Education (Grants No.200802940001 and 200802941028)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No.2010B02214,2009B08014,and 2010B14214)the Natural Science Foundation of Hohai University(Grant No. 2008426411)the Jiangsu "333" Program for High Level Talents (Grant No. 2017-B08038)the National Undergraduate Innovation Training Plan (Grant No.G20101106)
文摘The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.
文摘The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).
基金supported by the National Natural Science Foundation of China(Grant No:51579162,51879174 and 51379137)the Open Funds of the State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University(SKHL1301,SKHL1509)
文摘The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.
基金funded by the National Natural Science Foundation of China(11861003)the Project of Key Research and Development Plan of Ningxia,China(2019BEG03048)the Natural Science Foundation of Ningxia,China(2021AAC03206,2021AAC03208)。
文摘Suspended vegetation in open channels such as natural river,lake,reservoir usually affect the flow structure,causing the change of the water environment,sediment transport,bed deformation.In order to study the water flow behavior in curved open channels under the influence of suspended vegetation,experiments were conducted in a Ushaped flume with 180°bend where the suspended vegetation substituted by cylindrical glass rods were partially placed.The particle image velocimeter(PIV)system was employed to measure the flow velocities of various cases with different vegetation arrangements and roots length.Comparison and analysis were conducted for measured data,such as water level,velocity,head loss,Reynolds stress,and turbulence kinetic energy(TKE)to obtain certain general rules of water flow in open curved channels with suspended vegetation.It can be found from the measured data that the water level and the head loss in the vegetation area are closely related to the arrangements of the suspended vegetation.Furthermore,the drag force of the vegetation can not only lead to smaller increments of longitudinal TKE above the vegetation tail than that below it,but also lead to the flow velocities in vegetation area much smaller than areas without vegetation.In addition,suspended vegetation weakens the vortex strength near the water surface and increases the vortex strength below the vegetation tail,and the flow velocity in the vegetation area has a close relationship with the suspended vegetation length in the water.Therefore,it can be concluded that the reasonable arrangements of suspended vegetation group in curved open channel can protect the concave bank from being scoured,and protect the convex bank from being deposited.
文摘Conventional methods for measuring local shear stress on the wetted perimeter of open channels are related to the measurement of the very low velocity close to the boundary.Measuring near-zero velocity values with high fluctuations has always been a difficult task for fluid flow near solid boundaries.To solve the observation problems,a new model was developed to estimate the distribution of boundary shear stress from the velocity distribution in open channels with different cross-sectional shapes.To estimate the shear stress at a point on the wetted perimeter by the model,the velocity must be measured at a point with a known normal distance to the boundary.The experimental work of some other researchers on channels with various cross-sectional shapes,including rectangular,trapezoidal,partially full circular,and compound shapes,was used to evaluate the performance of the proposed model.Optimized exponent coefficients for the model were found using the multivariate Newton method with the minimum of the mean absolute percentage error(MAPE)between the model and experimental data as the objective function.Subsequently,the calculated shear stress distributions along the wetted perimeter were compared with the experimental data.The most important advantage of the proposed model is its inherent simplicity.The mean MAPE value for the seven selected cross-sections was 6.9%.The best results were found in the cross-sections with less discontinuity of the wetted perimeter,including the compound,trapezoidal,and partially full circular pipes.In contrast,for the rectangular cross-section with an angle between the bed and walls of 90°,MAPE increased due to the large discontinuities.
文摘The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. The literature on the transport of molten metals in open channels is quite scarce. In this work, the uniform flow of pig iron and molten aluminum in rectangular open channels is studied. Specific energy curves are constructed and critical heights are analytically determined. The transition from subcritical to supercritical flow is analyzed as a function of the angle of inclination of the channel and the roughness of its walls. Manning’s equation is applied to the pig iron flow using data reported in the literature for molten aluminum. The need to correct the roughness coefficient for pig iron is observed in order to obtain results consistent with those previously reported.
基金supported by National Major Scientific and Technological Special Project for"Significant New Drugs Development"(2011ZX09302-003-02)
文摘Hypoxic pulmonary hypertension(HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries.The aim of specific therapies for hypoxic pulmonary hypertension is to reduce pulmonary vascular resistance,reverse pulmonary vascular remodeling,and thereby improving right ventricular function.Iptakalim,a lipophilic para-amino compound with a low molecular weight,has been demonstrated to be a new selective ATP-sensitive potassium(K ATP) channel opener via pharmacological,electrophysiological,biochemical studies,and receptor binding tests.In hypoxia-induced animal models,iptakalim decreases the elevated mean pressure in pulmonary arteries,and attenuates remodeling in the right ventricle,pulmonary arteries and airways.Furthermore,iptakalim has selective antihypertensive effects,selective vasorelaxation effects on smaller arteries,and protective effects on endothelial cells,but no effects on the central nervous,respiratory,digestive or endocrine systems at therapeutic dose.Our previous studies demonstrated that iptakalim inhibited the effects of endothelin-1,reduced the intracellular calcium concentration and inhibited the proliferation of pulmonary artery smooth muscle cells.Since iptakalim has been shown safe and effective in both experimental animal models and phase I clinical trials,it can be a potential candidate of HPH in the future.
基金supported by the Natural Science Foundation of Guizhou Province(20122344)125 program of Guizhou Education Department(2012015)the Doctoral Scientific Fund of Zunyi Normal College(2012BSJJ12)
文摘With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, namely [Cd3((R)-CIA)2(CH3CO2)_2(1.4-DIB)2(H2O)2]·x(Guest)(1-D) and [Cd3((S)-CIA)2(CH3CO2)2(1.4-DIB)2(H2O)2]·x(Guest)(1-L). They contain 1D interesting ladder-like Cd-(R)-CIA(3-) chains and exhibit SHG-active behavior and photoluminescent property.
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.
文摘Increasing evidence, including from our laboratory, has revealed that opening of ATP sensitive potassium channels(K-ATP channels) plays the neuronal protective roles both in vivo and in vitro. Thus K-ATP channel openers(KCOs) have been proposed as potential neuroprotectants. Our previous studies demonstrated that K-ATP channels could regulate glutamate uptake activity in PC12 cells as well as in synaptosomes of rats. Since glutamate transporters(GluTs) of astrocytes play crucial roles in glutamate uptake and KATP channels are also expressed in astrocytes, the present study showed whether and how KATP channels regulated the function of GluTs in primary cultured astrocytes. The results showed that nonselective KCO pinacidil, selective mitochondrial KCO diazoxide, novel, and blood-brain barrier permeable KCO iptakalim could enhance glutamate uptake, except for the sarcolemmal KCO P1075. Moreover pinacidil, diazoxide, and iptakalim reversed the inhibition of glutamate uptake induced by 1-methyl-4-phenylpyridinium(MPP+). These potentiated effects were completely abolished by mitochondrial K-ATP blocker 5-hydroxydecanoate. Furthermore, either diazoxide or iptakalim could inhibit MPP+-induced elevation of reactive oxygen species (ROS) and phosphorylation of protein kinases C(PKC). These findings are the first to demonstrate that activation of K-ATP channel, especially mitochondrial K-ATP channel, improves the function of GluTs in astrocytes due to reducing ROS production and downregulating PKC phosphorylation. Therefore, the present study not only reveals a novel pharmacological profile of KCOs as regulators of GluTs, but also provides a new strategy for neuroprotection.
文摘In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid in open channel have been further proposed. The concepts of the density turbulence stress and the viscosity turbulence stress have been firstly presented in the paper.
基金supported by the EU FP7 Marie–Curie Career Integration Fund(Grant No.631883)the Royal Society Research Fund(Grant No.RG150036)the Fundamental Research Fund for the Central Universities,China(Grant No.2018IB010)
文摘A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment: selecting an appropriate coefficient of an initial state or changing the memory degree of environments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10772166and10672151)the Foundation of China Academy of Engineering Physics(Grant No20050104)
文摘This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
文摘A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the jump occurs and where its length is measured, so the data must be obtained with direct measurements in a laboratory and through empiric equations. This work presents the results of the generated hydraulic jumps and the measure of its length in a series of tests, where we input different flow rates in a transportable open channel hydraulic with a constant gate opening “a” and a slope of S = 0.0035, in the Engineering Faculty Research Centre of the Autonomous University of Chiapas. We also present the experimental method to generate a hydraulic jump, the measure of its length and a comparison with seven empirical equations, including the Sieñchi equation used in H-Canales, the most used software for hydraulic channels design in Latin America. The results show that the calculus of L with the proposed equation has a mean squared error (MSE) of 0.1337, a Bias of -0.0049, a model efficiency (ME) of 0.9991 and a determination coefficient (R2) of 0.9993 when compared with the experimental model. Meanwhile, the comparison of L calculated with the Sieñchi equation versus the experimental model resulted in a MSE of 0.1741, a bias of -0.0437, a ME of 0.9984 and a R2 of 0.9997. Both equations are highly recommended to estimate L in rectangular channels under the conditions presented in this paper, thus, the proposed equation can be applied if??y . Finally, it must be stated that we also proved that the Pavlosky equation is comparable in precision and accuracy concerning to proposed equation and Sieñchi equation.
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
基金supported by the Fundamental Research Funds for the Central Universities(Grants No.B200202116 and B200204044)the National Natural Science Foundation of China(Grant No.51879086)the 111 Project from the Minstry of Education and State Administration of Foreign Expert Affairs of China(Grant No.B17015).
文摘Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.