Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope w...Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope walls. As a goal of this paper, identification and assessment of potential slope instabilities prior to underground development is crucial for safe and sustainable mining. Towards goal achieving, this paper gives a comprehensive parametric study to investigate the influence of sublevel open stope (SLOS) underground mining on the surface and open pit slope walls. By means of numerical simulation, the SLOS design is tried against the existing open pit followed by adjustments of important slope parameters which are overall slope height (OSH) and overall slope angle (OSA). We found that underground mining may induce slope failure, particularly on the hangingwall side of the pit. Subsidence is prominent on the hanging wall and the surface, whereas, the uplift dominates the footwall and pit bottom. Pit wall closure is observed during underground mining. Although the assigned dimensions in the parametric study show a negligible effect of OSH and OSA, the high OSH experience low subsidence in comparison with low OSH. Overall, the results demonstrate that the slope walls on the hanging wall side are mostly affected by the underground mining and high-stress concentration prevails near slope toes and pit bottom. Additionally, slope deformation decrease from pit bottom towards the slope crest and surface. The results of this study add knowledge to open pit and underground mining interaction.展开更多
The effect of open porosity of Y2O3ceramic on the apparent contact angle and interaction between molten Ti47 Al alloy and Y2O3ceramic substrates under pure Ar was investigated by using a sessile drop method at 1600 ...The effect of open porosity of Y2O3ceramic on the apparent contact angle and interaction between molten Ti47 Al alloy and Y2O3ceramic substrates under pure Ar was investigated by using a sessile drop method at 1600 °C. As the open porosity increased from 9.6% to 30.3%, the spreading rate of molten Ti47 Al alloys on Y2O3ceramic substrates reduced from 2.3 to 1.1°/s; meanwhile, the final equilibrium contact angles increased from 55.8° to 63.6°. The microstructure observations revealed that with increasing the open porosity of the Y2O3substrates, the thickness of sand adhesion at the interfaces of the alloy droplets increased from 5.4 to 15.7 lm, and ceramic particles in the alloy matrix increased as well. The increasing contact area between the molten alloy and the substrate played a dominant role in determining the interaction on Ti Al/Y2O3interface.展开更多
文摘Underground mining is an economically viable option for exploiting ore reserves deemed uneconomic after open pit mining. However, underground development can have adverse effects on the above existing open pit slope walls. As a goal of this paper, identification and assessment of potential slope instabilities prior to underground development is crucial for safe and sustainable mining. Towards goal achieving, this paper gives a comprehensive parametric study to investigate the influence of sublevel open stope (SLOS) underground mining on the surface and open pit slope walls. By means of numerical simulation, the SLOS design is tried against the existing open pit followed by adjustments of important slope parameters which are overall slope height (OSH) and overall slope angle (OSA). We found that underground mining may induce slope failure, particularly on the hangingwall side of the pit. Subsidence is prominent on the hanging wall and the surface, whereas, the uplift dominates the footwall and pit bottom. Pit wall closure is observed during underground mining. Although the assigned dimensions in the parametric study show a negligible effect of OSH and OSA, the high OSH experience low subsidence in comparison with low OSH. Overall, the results demonstrate that the slope walls on the hanging wall side are mostly affected by the underground mining and high-stress concentration prevails near slope toes and pit bottom. Additionally, slope deformation decrease from pit bottom towards the slope crest and surface. The results of this study add knowledge to open pit and underground mining interaction.
基金support of the‘‘National Science&Technology Pillar Program of China’’project of PR China(No.2013BAB11B04)the National Natural Science Foundation of China(Grant No.51404017)the State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technolog
文摘The effect of open porosity of Y2O3ceramic on the apparent contact angle and interaction between molten Ti47 Al alloy and Y2O3ceramic substrates under pure Ar was investigated by using a sessile drop method at 1600 °C. As the open porosity increased from 9.6% to 30.3%, the spreading rate of molten Ti47 Al alloys on Y2O3ceramic substrates reduced from 2.3 to 1.1°/s; meanwhile, the final equilibrium contact angles increased from 55.8° to 63.6°. The microstructure observations revealed that with increasing the open porosity of the Y2O3substrates, the thickness of sand adhesion at the interfaces of the alloy droplets increased from 5.4 to 15.7 lm, and ceramic particles in the alloy matrix increased as well. The increasing contact area between the molten alloy and the substrate played a dominant role in determining the interaction on Ti Al/Y2O3interface.