This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ...This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.展开更多
This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing...This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing limitations,vehicle destination,etc.Most researchers who previously investigated this problem assumed the vehicle would not return to the depot,but did not consider its final destination.However,by considering 3PL in the B2B e-commerce,the vehicle is required back to the nearest 3PL location with available space.This paper formulates the problem as a mixed integer linear programming(MILP)model with the objective of minimizing the total travel distance.A coordinate representation particle swarm optimization(CRPSO)algorithm is developed to obtain the best delivery sequencing and the capacity of each vehicle.Results of the computational study show that the proposed method provides solution within a reasonable amount of time.Finally,the result compared to PSO also indicates that the CRPSO is effective.展开更多
基金supported by the National Natural Science Foundation of China (61963022,51665025,61873328)。
文摘This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.
文摘This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing limitations,vehicle destination,etc.Most researchers who previously investigated this problem assumed the vehicle would not return to the depot,but did not consider its final destination.However,by considering 3PL in the B2B e-commerce,the vehicle is required back to the nearest 3PL location with available space.This paper formulates the problem as a mixed integer linear programming(MILP)model with the objective of minimizing the total travel distance.A coordinate representation particle swarm optimization(CRPSO)algorithm is developed to obtain the best delivery sequencing and the capacity of each vehicle.Results of the computational study show that the proposed method provides solution within a reasonable amount of time.Finally,the result compared to PSO also indicates that the CRPSO is effective.