期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Blind Recognition of Non-Binary LDPC Codes Based on Ant Colony Optimization
1
作者 Guan Mengsheng Gao Wanting +2 位作者 Chen Qi Zhu Min Bai Baoming 《China Communications》 SCIE CSCD 2024年第10期59-69,共11页
This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp... This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel. 展开更多
关键词 ACO blind recognition non-binary LDPC codes open-set
下载PDF
Multi Multi-Task Learning with Dynamic Splitting for Open Open-Set Wireless Signal Recognition
2
作者 XU Yujie ZHAO Qingchen +2 位作者 XU Xiaodong QIN Xiaowei CHEN Jianqiang 《ZTE Communications》 2022年第S01期44-55,共12页
Open-set recognition(OSR)is a realistic problem in wireless signal recogni-tion,which means that during the inference phase there may appear unknown classes not seen in the training phase.The method of intra-class spl... Open-set recognition(OSR)is a realistic problem in wireless signal recogni-tion,which means that during the inference phase there may appear unknown classes not seen in the training phase.The method of intra-class splitting(ICS)that splits samples of known classes to imitate unknown classes has achieved great performance.However,this approach relies too much on the predefined splitting ratio and may face huge performance degradation in new environment.In this paper,we train a multi-task learning(MTL)net-work based on the characteristics of wireless signals to improve the performance in new scenes.Besides,we provide a dynamic method to decide the splitting ratio per class to get more precise outer samples.To be specific,we make perturbations to the sample from the center of one class toward its adversarial direction and the change point of confidence scores during this process is used as the splitting threshold.We conduct several experi-ments on one wireless signal dataset collected at 2.4 GHz ISM band by LimeSDR and one open modulation recognition dataset,and the analytical results demonstrate the effective-ness of the proposed method. 展开更多
关键词 open-set recognition dynamic method adversarial direction multi-task learn-ing wireless signal
下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
3
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(osr) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
下载PDF
A new progressive open-set recognition method with adaptive probability threshold 被引量:1
4
作者 Zhunga LIU Xuemeng HUI Yimin FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期297-310,共14页
In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the cl... In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the class of some objects in practice,and this is considered as an Open-Set Recognition(OSR)problem.In this paper,we propose a new progressive open-set recognition method with adaptive probability threshold.Both the labeled training data and the test data(objects to be classified)are put into a common data set,and the k-Nearest Neighbors(k-NNs)of each object are sought in this common set.Then,we can determine the probability of object lying in the given classes.If the majority of k-NNs of the object are from labeled training data,this object quite likely belongs to one of the given classes,and the density of the object and its neighbors is taken into account here.However,when most of k-NNs are from the unlabeled test data set,the class of object is considered very uncertain because the class of test data is unknown,and this object cannot be classified in this step.Once the objects belonging to known classes with high probability are all found,we re-calculate the probability of the other uncertain objects belonging to known classes based on the labeled training data and the objects marked with the estimated probability.Such iteration will stop when the probabilities of all the objects belonging to known classes are not changed.Then,a modified Otsu’s method is employed to adaptively seek the probability threshold for the final classification.If the probability of object belonging to known classes is smaller than this threshold,it will be assigned to the ignorant(unknown)class that is not included in training data set.The other objects will be committed to a specific class.The effectiveness of the proposed method has been validated using some experiments. 展开更多
关键词 Data mining k-nearest neighbors open-set recognition Object recognition The Otsu’s method
原文传递
基于深度学习与开集识别技术的对抗式DDoS攻击检测技术
5
作者 吴志祥 刘莉丹 高博 《邮电设计技术》 2024年第8期18-23,共6页
网络已成为现代生活不可或缺的一部分,但也面临着诸多的安全风险,特别是分布式拒绝服务(DDoS)攻击。利用人工智能(AI)技术可应对DDoS攻击带来的挑战。基于CNN-Geo和CycleGAN技术,提出一种包含一个增量学习模块的防御模型,该增量学习模... 网络已成为现代生活不可或缺的一部分,但也面临着诸多的安全风险,特别是分布式拒绝服务(DDoS)攻击。利用人工智能(AI)技术可应对DDoS攻击带来的挑战。基于CNN-Geo和CycleGAN技术,提出一种包含一个增量学习模块的防御模型,该增量学习模块能够训练未知流量并不断提高模型的防御能力。该模型可以识别偏离学习分布的未知攻击,评估结果表明其准确度超过98.16%,增强了对现实场景中不断演变的DDoS攻击策略的检测和防御能力。 展开更多
关键词 DDOS AI 开放集识别 CNN-Geo CycleGAN 增量学习
下载PDF
基于联合动态稀疏表示的开集距离像目标识别方法
6
作者 刘盛启 张会强 +2 位作者 滕书华 瞿爽 吴中杰 《电子与信息学报》 EI CSCD 北大核心 2023年第11期4101-4109,共9页
针对开集条件下多视高分辨距离像(HRRP)目标识别问题,提出了一种基于联合动态稀疏表示(JDSR)的开集识别方法。该方法利用JDSR求解多视HRRP在过完备字典上的重构误差,采用极值理论(EVT)对匹配和非匹配类别的重构误差拖尾进行建模,将开集... 针对开集条件下多视高分辨距离像(HRRP)目标识别问题,提出了一种基于联合动态稀疏表示(JDSR)的开集识别方法。该方法利用JDSR求解多视HRRP在过完备字典上的重构误差,采用极值理论(EVT)对匹配和非匹配类别的重构误差拖尾进行建模,将开集识别问题转化为假设检验问题求解。识别时利用重构误差确定候选类,根据尾部分布的置信度获得匹配类与非匹配类得分,并将两者的加权和作为类别判据最终确定库外目标或候选类。该方法能够有效利用多视观测来自相同目标的先验信息提高开集条件下的HRRP识别性能,并且对多视数据不同的获取场景具有良好的适应性。利用从MSTAR反演生成的HRRP数据对算法进行了测试,结果表明所提方法的性能优于主流开集识别方法。 展开更多
关键词 开集识别 联合动态稀疏表示 极值理论 高分辨距离像
下载PDF
Characteristics of Mandarin Open-set Word Recognition Development among Chinese Children with Cochlear Implants
7
作者 Ying Kong Xin Liu +1 位作者 Sha Liu Yong-Xin Li 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第20期2410-2415,共6页
Background: Cochlear implants (Cls) can improve speech recognition for children with severe congenital hearing loss, and open-set word recognition is an important efficacy measure. This study examined Mandarin open... Background: Cochlear implants (Cls) can improve speech recognition for children with severe congenital hearing loss, and open-set word recognition is an important efficacy measure. This study examined Mandarin open-set word recognition development among Chinese children with Cls and normal hearing (NH). Methods: This study included 457 children with CIs and 131 children with NH, who completed the Mandarin lexical neighborhood test. The results for children at 1-8 years alter receiving their Cls were compared to those from the children with NH using linear regression analysis and analysis of variance. Results: Recognition of disyllabic easy words, disyllabic hard words, monosyllabic easy words, and monosyllabic hard words increased with time after CI implantation. Scores for cases with implantation before 3 years old were significantly better than those for implantation after 3 years old. There were significant differences in open-set word recognition between the CI and NH groups. For implantation before 2 years, there was no significant difference in recognition at the ages of 6-7 years, compared to 3-year-old children with NH, or at the age of 10 years, compared to 6-year-old children with NH. For implantation before 3 years, there was no significant difference in recognition at the ages of 8 9 years, compared to 3-year-old children with NH, or at the age of 10 years, compared to 6-year-old children with NH. For implantation after 3 years, there was a significant difference in recognition at the age of 13 years, compared to 3-year-old children with NH. Conclusions: Mandarin open-set word recognition increased with time after CI implantation, and the age at implantation had a significant effect on long-term speech recognition. Chinese children with Cls had delayed but similar development of recognition, compared to norrnal children. Early CI implantation can shorten the gap between children with Cls and normal children. 展开更多
关键词 Children Cochlear Implantation open-set Word recognition
原文传递
Open-Set Face Verification Algorithm Using Competitive Negative Samples
8
作者 YANG Qiong DING Xiao-qing 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第1期20-25,共6页
A novel face verification algorithm using competitive negative samples is proposed.In the algorithm,the tested face matches not only with the claimed client face but also with competitive negative samples,and all the ... A novel face verification algorithm using competitive negative samples is proposed.In the algorithm,the tested face matches not only with the claimed client face but also with competitive negative samples,and all the matching scores are combined to make a final decision.Based on the algorithm,three schemes,including closestnegative-sample scheme,all-negative-sample scheme,and closest-few-negative-sample scheme,are designed.They are tested and compared with the traditional similaritybased verification approach on several databases with different features and classifiers.Experiments demonstrate that the three schemes reduce the verification error rate by 25.15%,30.24%,and 30.97%,on average,respectively. 展开更多
关键词 image recognition competitive negative samples open-set face verification
原文传递
结合环状原型空间优化的开放集目标检测 被引量:1
9
作者 孙旭豪 沈阳 +1 位作者 魏秀参 安鹏 《中国图象图形学报》 CSCD 北大核心 2023年第9期2719-2732,共14页
目的现有目标检测任务常在封闭集设定中进行。然而在现实问题中,待检测图片中往往包含未知类别目标。因此,在保证模型对已知类检测性能的基础上,为了提升模型在现实检测任务中对新增类别的目标检测能力,本文对开放集目标检测任务进行研... 目的现有目标检测任务常在封闭集设定中进行。然而在现实问题中,待检测图片中往往包含未知类别目标。因此,在保证模型对已知类检测性能的基础上,为了提升模型在现实检测任务中对新增类别的目标检测能力,本文对开放集目标检测任务进行研究。方法区别于现有的开放集目标检测框架在检测任务中将背景类与未知类视为一个类别进行优化,本文框架在进行开放集类别识别的过程中,优先识别候选框属于背景类或是含待识别目标类别,而后再对含待识别目标类别进行已知类与未知类的判别。本文提出基于环状原型空间优化的检测器,该检测器可以通过优化待检测框的特征在高维空间中的稀疏程度对已知类、未知类与背景类进行环状序列判别,从而提升模型对开放集类别的检测性能。在(region proposal networks,RPN)层后设计了随机覆盖候选框的方式筛选相关的背景类训练框,避免了以往开放集检测工作中繁杂的背景类采样步骤。结果本文方法在保证模型对封闭集设定下检测性能的情况下,通过逐步增加未知类别的数量,在Visual Object Classes-Common Objects in Context-20(VOC-COCO-20),Visual Object Classes-Common Objects in Context-40(VOC-COCO-40)以及Visual Object ClassesCommon Objects in Context-60(VOC-COCO-60)数据集中的4个指标上均取得了具有竞争力的结果。同时,通过增加未知类目标的图片数量与包含已知类目标的图片数量的比值wilderness ratio(WR),所提方法在3个对比实验共12项结果中,有10项领先于对比方法。消融实验也证明了方法中每一个模块的有效性。结论本文提出的基于环状原型空间优化的开放集目标检测框架取得了较好的检测效果。通过在实际检测任务中的实验对比,证明了本文方法在不改变模型封闭集识别性能的情况下,有更强的开放集类别检测能力。 展开更多
关键词 开放集目标检测(OSOD) 原型学习 开放集识别(osr) 目标检测 深度神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部