期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
智能问诊中基于深度神经网络的反问生成方法
被引量:
4
1
作者
杜曾贞
唐东昕
解丹
《计算机应用》
CSCD
北大核心
2022年第3期867-873,共7页
在智能问诊中,为了让医生快速提出合理的反问以提高医患对话效率,提出了基于深度神经网络的反问生成方法。首先获取大量医患对话文本并进行标注;然后使用文本循环神经网络(TextRNN)、文本卷积神经网络(TextCNN)二种分类模型分别对医生...
在智能问诊中,为了让医生快速提出合理的反问以提高医患对话效率,提出了基于深度神经网络的反问生成方法。首先获取大量医患对话文本并进行标注;然后使用文本循环神经网络(TextRNN)、文本卷积神经网络(TextCNN)二种分类模型分别对医生的陈述进行分类;再利用双向文本循环神经网络(TextRNN-B)、双向变形编码器(BERT)分类模型进行问题触发;设计六种不同的问答选取方式来模拟医疗咨询领域情景,采用开源神经机器翻译(OpenNMT)模型进行反问生成;最后对已生成的反问进行综合评估。实验结果表明,使用TextRNN进行分类优于TextCNN,利用BERT模型进行问题触发优于TextRNN-B,采用OpenNMT模型在Window-top方式下实现反问生成时,使用双语评估替补(BLEU)和困惑度(PPL)指标进行评价的结果最好。所提方法验证了深度神经网络技术在反问生成中的有效性,可以有效解决智能问诊中医生反问生成的问题。
展开更多
关键词
智能问诊
反问生成
文本循环神经网络
双向变形编码器
开源神经机器翻译
下载PDF
职称材料
题名
智能问诊中基于深度神经网络的反问生成方法
被引量:
4
1
作者
杜曾贞
唐东昕
解丹
机构
湖北中医药大学信息工程学院
贵州中医药大学第一附属医院
出处
《计算机应用》
CSCD
北大核心
2022年第3期867-873,共7页
基金
国家重点研发计划项目(2019YFC1712504)。
文摘
在智能问诊中,为了让医生快速提出合理的反问以提高医患对话效率,提出了基于深度神经网络的反问生成方法。首先获取大量医患对话文本并进行标注;然后使用文本循环神经网络(TextRNN)、文本卷积神经网络(TextCNN)二种分类模型分别对医生的陈述进行分类;再利用双向文本循环神经网络(TextRNN-B)、双向变形编码器(BERT)分类模型进行问题触发;设计六种不同的问答选取方式来模拟医疗咨询领域情景,采用开源神经机器翻译(OpenNMT)模型进行反问生成;最后对已生成的反问进行综合评估。实验结果表明,使用TextRNN进行分类优于TextCNN,利用BERT模型进行问题触发优于TextRNN-B,采用OpenNMT模型在Window-top方式下实现反问生成时,使用双语评估替补(BLEU)和困惑度(PPL)指标进行评价的结果最好。所提方法验证了深度神经网络技术在反问生成中的有效性,可以有效解决智能问诊中医生反问生成的问题。
关键词
智能问诊
反问生成
文本循环神经网络
双向变形编码器
开源神经机器翻译
Keywords
intelligent consultation
rhetorical question generation
Text Recurrent
neural
Network(TextRNN)
Bidirectional Encoder Representations from Transformers(BERT)
open-source
neural
machine
translation
(
opennmt
)
分类号
TP389.1 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
智能问诊中基于深度神经网络的反问生成方法
杜曾贞
唐东昕
解丹
《计算机应用》
CSCD
北大核心
2022
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部