As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of mater...As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of materials.However,the large and expensive vector network analyzers(VNA)with expensive analysis software applied in measuring dielectric properties make research limited to the laboratory.To acquire dielectric spectra in situ,a model for solving relative complex permittivity was derived,and its performance was validated.Then,a low-cost portable dielectric spectrometer with a mini VNA,a Raspberry Pi,and a coaxial probe as core parts was developed over the frequency range of 100-3000 MHz.The stability and accuracy of the developed spectrometer were tested using milk and juice.The results indicated that the relative errors of the model were within±5%for dielectric constant(ε′)and loss factor(ε″).The coefficients of variation of measuredε′andε″by the developed spectrometer at 100-3000 MHz were less than 1%and 2%,respectively.Compared with the dielectric properties obtained by using a commercial dielectric measurement system,the relative errors of measuredε′andε″were within±3.4%and±6.0%,respectively.This study makes fast,non-destructive,and on-site food quality detection using dielectric spectra possible.展开更多
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In...Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.展开更多
This paper proposes the stepped coaxial line sensor using the reflection coefficient in microwave range for complex permittivity measuring. The proposed probe is adapted from the conventional SMA connector which is ch...This paper proposes the stepped coaxial line sensor using the reflection coefficient in microwave range for complex permittivity measuring. The proposed probe is adapted from the conventional SMA connector which is cheap and easy to fabricate. The analysis model of the probe has been done by using FDTD method with the reference material such as the distilled water. The stepped SMA probe presents the accurate result compared with the convention one. The permittivity values of the concentrated alcohols of 10%, 15% and 20% as DUTs at 24oC in a frequency range of 0.1 GHz to 6 GHz have been measured using the proposed probe. Also, the measurement of salted butter permittivity has been performed. The measured results are more accurate compared with the commercial probe.展开更多
基金financial support provided by the National Natural Science Foundation of China(Grant No.32172308)Startup Foundation for Doctors of Yan'an University(No.YDBK2022-79).
文摘As a simple,fast,and non-destructive measuring technology,dielectric spectroscopy is usually used to analyze the dielectric properties of agricultural products and food,and then to predict the main components of materials.However,the large and expensive vector network analyzers(VNA)with expensive analysis software applied in measuring dielectric properties make research limited to the laboratory.To acquire dielectric spectra in situ,a model for solving relative complex permittivity was derived,and its performance was validated.Then,a low-cost portable dielectric spectrometer with a mini VNA,a Raspberry Pi,and a coaxial probe as core parts was developed over the frequency range of 100-3000 MHz.The stability and accuracy of the developed spectrometer were tested using milk and juice.The results indicated that the relative errors of the model were within±5%for dielectric constant(ε′)and loss factor(ε″).The coefficients of variation of measuredε′andε″by the developed spectrometer at 100-3000 MHz were less than 1%and 2%,respectively.Compared with the dielectric properties obtained by using a commercial dielectric measurement system,the relative errors of measuredε′andε″were within±3.4%and±6.0%,respectively.This study makes fast,non-destructive,and on-site food quality detection using dielectric spectra possible.
基金supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018。
文摘Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
文摘This paper proposes the stepped coaxial line sensor using the reflection coefficient in microwave range for complex permittivity measuring. The proposed probe is adapted from the conventional SMA connector which is cheap and easy to fabricate. The analysis model of the probe has been done by using FDTD method with the reference material such as the distilled water. The stepped SMA probe presents the accurate result compared with the convention one. The permittivity values of the concentrated alcohols of 10%, 15% and 20% as DUTs at 24oC in a frequency range of 0.1 GHz to 6 GHz have been measured using the proposed probe. Also, the measurement of salted butter permittivity has been performed. The measured results are more accurate compared with the commercial probe.