开放集文字识别(Open-set text recognition,OSTR)是一项新任务,旨在解决开放环境下文字识别应用中的语言模型偏差及新字符识别与拒识问题.最近的OSTR方法通过将上下文信息与视觉信息分离来解决语言模型偏差问题.然而,这些方法往往忽视...开放集文字识别(Open-set text recognition,OSTR)是一项新任务,旨在解决开放环境下文字识别应用中的语言模型偏差及新字符识别与拒识问题.最近的OSTR方法通过将上下文信息与视觉信息分离来解决语言模型偏差问题.然而,这些方法往往忽视了字符视觉细节的重要性.考虑到上下文信息的偏差,局部细节信息在区分视觉上接近的字符时变得更加重要.本文提出一种基于自适应字符部件表示的开放集文字识别框架,构建基于文字局部结构相似度量的开放集文字识别方法,通过对不同字符部件进行显式建模来改进对局部细节特征的建模能力.与基于字根(Radical)的方法不同,所提出的框架采用数据驱动的部件设计,具有语言无关的特性和跨语言泛化识别的能力.此外,还提出一种局部性约束正则项来使模型训练更加稳定.大量的对比实验表明,本文方法在开放集、传统闭集文字识别任务上均具有良好的性能.展开更多
开放环境下的模式识别与文字识别应用中,新数据、新模式和新类别不断涌现,要求算法具备应对新类别模式的能力。针对这一问题,研究者们开始聚焦开放集文字识别(open-set text recognition,OSTR)任务。该任务要求,算法在测试(推断)阶段,...开放环境下的模式识别与文字识别应用中,新数据、新模式和新类别不断涌现,要求算法具备应对新类别模式的能力。针对这一问题,研究者们开始聚焦开放集文字识别(open-set text recognition,OSTR)任务。该任务要求,算法在测试(推断)阶段,既能识别训练集见过的文字类别,还能够识别、拒识或发现训练集未见过的新文字。开放集文字识别逐步成为文字识别领域的研究热点之一。本文首先对开放集模式识别技术进行简要总结,然后重点介绍开放集文字识别的研究背景、任务定义、基本概念、研究重点和技术难点。同时,针对开放集文字识别三大问题(未知样本发现、新类别识别和上下文信息偏差),从方法的模型结构、特点优势和应用场景的角度对相关工作进行了综述。最后,对开放集文字识别技术的发展趋势和研究方向进行了分析展望。展开更多
文摘开放集文字识别(Open-set text recognition,OSTR)是一项新任务,旨在解决开放环境下文字识别应用中的语言模型偏差及新字符识别与拒识问题.最近的OSTR方法通过将上下文信息与视觉信息分离来解决语言模型偏差问题.然而,这些方法往往忽视了字符视觉细节的重要性.考虑到上下文信息的偏差,局部细节信息在区分视觉上接近的字符时变得更加重要.本文提出一种基于自适应字符部件表示的开放集文字识别框架,构建基于文字局部结构相似度量的开放集文字识别方法,通过对不同字符部件进行显式建模来改进对局部细节特征的建模能力.与基于字根(Radical)的方法不同,所提出的框架采用数据驱动的部件设计,具有语言无关的特性和跨语言泛化识别的能力.此外,还提出一种局部性约束正则项来使模型训练更加稳定.大量的对比实验表明,本文方法在开放集、传统闭集文字识别任务上均具有良好的性能.
文摘开放环境下的模式识别与文字识别应用中,新数据、新模式和新类别不断涌现,要求算法具备应对新类别模式的能力。针对这一问题,研究者们开始聚焦开放集文字识别(open-set text recognition,OSTR)任务。该任务要求,算法在测试(推断)阶段,既能识别训练集见过的文字类别,还能够识别、拒识或发现训练集未见过的新文字。开放集文字识别逐步成为文字识别领域的研究热点之一。本文首先对开放集模式识别技术进行简要总结,然后重点介绍开放集文字识别的研究背景、任务定义、基本概念、研究重点和技术难点。同时,针对开放集文字识别三大问题(未知样本发现、新类别识别和上下文信息偏差),从方法的模型结构、特点优势和应用场景的角度对相关工作进行了综述。最后,对开放集文字识别技术的发展趋势和研究方向进行了分析展望。