The primary way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processor is to use the OpenMP programming technique.To address the problem of low parallelism efficiency caused by slow acce...The primary way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processor is to use the OpenMP programming technique.To address the problem of low parallelism efficiency caused by slow accessto thread private variables in the compilation of Sunway OpenMP programs, thispaper proposes a thread private variable access technique based on privilegedinstructions. The privileged instruction-based thread-private variable access techniquecentralizes the implementation of thread-private variables at the compilerlevel, eliminating the model switching overhead of invoking OS core processingand improving the speed of accessing thread-private variables. On the Sunway1621 server platform, NPB3.3-OMP and SPEC OMP2012 achieved 6.2% and6.8% running efficiency gains, respectively. The results show that the techniquesproposed in this paper can provide technical support for giving full play to theadvantages of Sunway’s high-performance multi-core processors.展开更多
The leading way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processors is to use OpenMP programming techniques.In order to address the problem of low parallel efficiency caused by hight...The leading way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processors is to use OpenMP programming techniques.In order to address the problem of low parallel efficiency caused by highthread group control overhead in the compilation of Sunway OpenMP programs,this paper proposes the parallel region reconstruction technique. The parallelregion reconstruction technique expands the parallel scope of parallel regionsin OpenMP programs by parallel region merging and parallel region extending.Moreover, it reduces the number of parallel regions in OpenMP programs,decreases the overhead of frequent creation and convergence of thread groups,and converts standard fork-join model OpenMP programs to higher performanceSPMD modelOpenMP programs. On the Sunway 1621 server computer, NPB3.3-OMP and SPEC OMP2012 achieved 8.9% and 7.9% running efficiency improvementrespectively through parallel region reconstruction technique. As a result,the parallel region reconstruction technique is feasible and effective. It providestechnical support to fully exploit the multi-core parallelism advantage of Sunway’shigh-performance processors.展开更多
文摘The primary way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processor is to use the OpenMP programming technique.To address the problem of low parallelism efficiency caused by slow accessto thread private variables in the compilation of Sunway OpenMP programs, thispaper proposes a thread private variable access technique based on privilegedinstructions. The privileged instruction-based thread-private variable access techniquecentralizes the implementation of thread-private variables at the compilerlevel, eliminating the model switching overhead of invoking OS core processingand improving the speed of accessing thread-private variables. On the Sunway1621 server platform, NPB3.3-OMP and SPEC OMP2012 achieved 6.2% and6.8% running efficiency gains, respectively. The results show that the techniquesproposed in this paper can provide technical support for giving full play to theadvantages of Sunway’s high-performance multi-core processors.
文摘The leading way to achieve thread-level parallelism on the Sunwayhigh-performance multicore processors is to use OpenMP programming techniques.In order to address the problem of low parallel efficiency caused by highthread group control overhead in the compilation of Sunway OpenMP programs,this paper proposes the parallel region reconstruction technique. The parallelregion reconstruction technique expands the parallel scope of parallel regionsin OpenMP programs by parallel region merging and parallel region extending.Moreover, it reduces the number of parallel regions in OpenMP programs,decreases the overhead of frequent creation and convergence of thread groups,and converts standard fork-join model OpenMP programs to higher performanceSPMD modelOpenMP programs. On the Sunway 1621 server computer, NPB3.3-OMP and SPEC OMP2012 achieved 8.9% and 7.9% running efficiency improvementrespectively through parallel region reconstruction technique. As a result,the parallel region reconstruction technique is feasible and effective. It providestechnical support to fully exploit the multi-core parallelism advantage of Sunway’shigh-performance processors.