In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu...As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.展开更多
Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are ...Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.展开更多
In this paper, we introduced the hyperreflexivity of operator algebra A on Banach space, discussed the necessary, and sufficient condition that A is hyperreflexive, the estimate of hyperreflexive constant and the inva...In this paper, we introduced the hyperreflexivity of operator algebra A on Banach space, discussed the necessary, and sufficient condition that A is hyperreflexive, the estimate of hyperreflexive constant and the invariance of hyperreflexivety under the similarity transformation.展开更多
With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel funct...With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.展开更多
In this paper, we study various properties of algebraic extension of *-A operator.Specifically, we show that every algebraic extension of *-A operator has SVEP and is isoloid.And if T is an algebraic extension of *...In this paper, we study various properties of algebraic extension of *-A operator.Specifically, we show that every algebraic extension of *-A operator has SVEP and is isoloid.And if T is an algebraic extension of *-A operator, then Weyl's theorem holds for f(T), where f is an analytic functions on some neighborhood of σ(T) and not constant on each of the components of its domain.展开更多
We prove a general mirror duality theorem for a subalgebra U of a simple conformal vertex algebra A and its commutant V=ComA(U).Specifically,we assume that A≌■_(i∈I)U_(i)■V_(i) as a U■V-module,where the U-modules...We prove a general mirror duality theorem for a subalgebra U of a simple conformal vertex algebra A and its commutant V=ComA(U).Specifically,we assume that A≌■_(i∈I)U_(i)■V_(i) as a U■V-module,where the U-modules Uiare simple and distinct and are objects of a semisimple braided ribbon category of Umodules,and the V-modules Viare semisimple and contained in a(not necessarily rigid) braided tensor category of V-modules.We also assume U=ComA(V).Under these conditions,we construct a braid-reversed tensor equivalence τ:u_(A)→v_(A),where u_(A)is the semisimple category of U-modules with simple objects Ui,i∈I,and v_(A)is the category of V-modules whose objects are finite direct sums of Vi.In particular,the V-modules Viare simple and distinct,and v_(A)is a rigid tensor category.As an application,we find a rigid semisimple tensor subcategory of modules for the Virasoro algebra at central charge 13+6p+6p^(-1),p∈Z_(≥2), which is braided tensor equivalent to an abelian 3-cocycle twist of the category of finite-dimensional sl2-modules.Consequently,the Virasoro vertex operator algebra at central charge 13+6p+6p^(-1)is the PSL_(2)(C)-fixed-point subalgebra of a simple conformal vertex algebra w(-p),analogous to the realization of the Virasoro vertex operator algebra at central charge 13-6p-6p^(-1)as the PSL_(2)(C)-fixed-point subalgebra of the triplet algebra W(p).展开更多
Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper stud...Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).展开更多
In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A m...In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.展开更多
Recently we proposed “a new interpretation of quantum mechanics (called quantum and classical measurement theory)” in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic tu...Recently we proposed “a new interpretation of quantum mechanics (called quantum and classical measurement theory)” in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic turn of quantum mechanics. This turn from physics to language does not only realize the remarkable extension of quantum mechanics but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics). And thus, the turn urges us to dream that traditional philosophies (i.e., Parmenides, Plato, Aristotle, Descartes, John Locke, Berkeley, Hume, Kant, Saussure, Wittgenstein, etc.) can be understood in the quantum mechanical world view. This dream will be challenged in this paper. We, of course, know that most scientists are skeptical to philosophy. Still, we can expect that readers find a good linguistic philosophy (i.e. philosophy of language) in quantum mechanics.展开更多
This paper derives explicit expressions of the infinitesimal gauge operators for pseudoscalalr fields in a gauge theory coupling vector and axial-vector fields with the aid of the method of operator algebra. The gauge...This paper derives explicit expressions of the infinitesimal gauge operators for pseudoscalalr fields in a gauge theory coupling vector and axial-vector fields with the aid of the method of operator algebra. The gauge operators of the coset pure gauge fields theory under the chiral group SU(N) X SU(N) are also obtainede.展开更多
In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view ...In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view and software working, is used. The aim is to measure the inverse kinematics modeling work on different serial manipulator mechanisms with spatial vector algebra. The algorithm is used with the same reference inputs on the recursive, exact and nonrecursive manipulators. During the tests, the permitted error tolerance is 0.01 cm. The graph plots show that the algorithm is fit for the error tolerance.展开更多
Let B(X) be the operator algebra for a separable infinite dimensional Hilbert space H, endowed with the strong operator topology or *-strong topology. We give sufficient conditions for a continuous linear mapping L...Let B(X) be the operator algebra for a separable infinite dimensional Hilbert space H, endowed with the strong operator topology or *-strong topology. We give sufficient conditions for a continuous linear mapping L : B(X) →B(X) to be supercyclic or ,-supercyclic. In particular our condition implies the existence of an infinite dimensional subspace of supercyclic vectors for a mapping T on H. Hypercyclicity of the operator algebra with strong operator topology was studied' by Chan and here we obtain an analogous result in the case of *-strong operator topology.展开更多
For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal v...For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal vectors of (V, w), respectively, and were used to study duality theory of vertex operator algebras via coset constructions. Using these objects attached to (V,w), we shall understand the structure of the vertex operator algebra (V,w). At first, we define the set Sc(V,w) of semi-conformal vectors of V, then we prove that Sc(V,w) is an aiYine algebraic variety with a partial ordering and an involution map. Corresponding to each semi-conformal vector, there is a unique maximal semi-conformal vertex operator subalgebra containing it. The properties of these subalgebras are invariants of vertex operator algebras. As an example, we describe the corresponding varieties of semi-conformal vectors for Heisenberg vertex operator algebras. As an application, we give two characterizations of Heisenberg vertex operator algebras using the properties of these varieties.展开更多
We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra H4 with some natural conditions. It turns out that the representation theory of H4 is quite different from the theory of represent...We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra H4 with some natural conditions. It turns out that the representation theory of H4 is quite different from the theory of representations of Heisenberg algebras. We also study the extension of the vertex operator algebra VH4 (e, 0) by the even lattice L. We give the structure of the extension VH4 (e, 0) [L] and its irreducible modules via irreducible representations of VH4(e, 0) viewed as a vertex algebra.展开更多
We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral fu...We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).展开更多
Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-modul...Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We also construct the Verma type admissible V-module from an A m (V)-module by using bimodules展开更多
In this paper we discuss the K-groups of Wiener algebra ;W. For the 1-shift space XGM2,We obtain a characterization of Fredholm operators on X^nGM2 for all n ∈ N. We also calculate the K-groups of operator algebra on...In this paper we discuss the K-groups of Wiener algebra ;W. For the 1-shift space XGM2,We obtain a characterization of Fredholm operators on X^nGM2 for all n ∈ N. We also calculate the K-groups of operator algebra on the 1-shift space XGM2.展开更多
Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M...Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.展开更多
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
基金supported by National Natural Science Foundation of China (Grant No. 50375071)Commission of Science, Technology and Industry for National Defense Pre-research Foundation of China (Grant No. C4220062501)
文摘As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.
文摘Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.
文摘In this paper, we introduced the hyperreflexivity of operator algebra A on Banach space, discussed the necessary, and sufficient condition that A is hyperreflexive, the estimate of hyperreflexive constant and the invariance of hyperreflexivety under the similarity transformation.
基金The project supported by National Natural Science Foundation of China and the President Foundation of the Chinese Academy of Sciences
文摘With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
基金partially supported by the NNSF(11201126)the Basic Science and Technological Frontier Project of Henan Province(142300410167)+1 种基金the Natural Science Foundation of the Department of Education,Henan Province(14B110008)the Youth Science Foundation of Henan Normal University(2013QK01)
文摘In this paper, we study various properties of algebraic extension of *-A operator.Specifically, we show that every algebraic extension of *-A operator has SVEP and is isoloid.And if T is an algebraic extension of *-A operator, then Weyl's theorem holds for f(T), where f is an analytic functions on some neighborhood of σ(T) and not constant on each of the components of its domain.
文摘We prove a general mirror duality theorem for a subalgebra U of a simple conformal vertex algebra A and its commutant V=ComA(U).Specifically,we assume that A≌■_(i∈I)U_(i)■V_(i) as a U■V-module,where the U-modules Uiare simple and distinct and are objects of a semisimple braided ribbon category of Umodules,and the V-modules Viare semisimple and contained in a(not necessarily rigid) braided tensor category of V-modules.We also assume U=ComA(V).Under these conditions,we construct a braid-reversed tensor equivalence τ:u_(A)→v_(A),where u_(A)is the semisimple category of U-modules with simple objects Ui,i∈I,and v_(A)is the category of V-modules whose objects are finite direct sums of Vi.In particular,the V-modules Viare simple and distinct,and v_(A)is a rigid tensor category.As an application,we find a rigid semisimple tensor subcategory of modules for the Virasoro algebra at central charge 13+6p+6p^(-1),p∈Z_(≥2), which is braided tensor equivalent to an abelian 3-cocycle twist of the category of finite-dimensional sl2-modules.Consequently,the Virasoro vertex operator algebra at central charge 13+6p+6p^(-1)is the PSL_(2)(C)-fixed-point subalgebra of a simple conformal vertex algebra w(-p),analogous to the realization of the Virasoro vertex operator algebra at central charge 13-6p-6p^(-1)as the PSL_(2)(C)-fixed-point subalgebra of the triplet algebra W(p).
基金Project supported in part by the International Technology Collaboration Research Program of China (Grant No 2007DFA706700)
文摘Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).
文摘In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.
文摘Recently we proposed “a new interpretation of quantum mechanics (called quantum and classical measurement theory)” in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic turn of quantum mechanics. This turn from physics to language does not only realize the remarkable extension of quantum mechanics but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics). And thus, the turn urges us to dream that traditional philosophies (i.e., Parmenides, Plato, Aristotle, Descartes, John Locke, Berkeley, Hume, Kant, Saussure, Wittgenstein, etc.) can be understood in the quantum mechanical world view. This dream will be challenged in this paper. We, of course, know that most scientists are skeptical to philosophy. Still, we can expect that readers find a good linguistic philosophy (i.e. philosophy of language) in quantum mechanics.
文摘This paper derives explicit expressions of the infinitesimal gauge operators for pseudoscalalr fields in a gauge theory coupling vector and axial-vector fields with the aid of the method of operator algebra. The gauge operators of the coset pure gauge fields theory under the chiral group SU(N) X SU(N) are also obtainede.
文摘In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view and software working, is used. The aim is to measure the inverse kinematics modeling work on different serial manipulator mechanisms with spatial vector algebra. The algorithm is used with the same reference inputs on the recursive, exact and nonrecursive manipulators. During the tests, the permitted error tolerance is 0.01 cm. The graph plots show that the algorithm is fit for the error tolerance.
文摘Let B(X) be the operator algebra for a separable infinite dimensional Hilbert space H, endowed with the strong operator topology or *-strong topology. We give sufficient conditions for a continuous linear mapping L : B(X) →B(X) to be supercyclic or ,-supercyclic. In particular our condition implies the existence of an infinite dimensional subspace of supercyclic vectors for a mapping T on H. Hypercyclicity of the operator algebra with strong operator topology was studied' by Chan and here we obtain an analogous result in the case of *-strong operator topology.
基金supported by the State Scholarship Fund of China Scholarship Council (Grant No. 201208410122)
文摘For a vertex operator algebra V with conformal vector w, we consider a class of vertex operator subalgebras and their conformal vectors. They are called semi-conformal vertex operator subalgebras and semi- conformal vectors of (V, w), respectively, and were used to study duality theory of vertex operator algebras via coset constructions. Using these objects attached to (V,w), we shall understand the structure of the vertex operator algebra (V,w). At first, we define the set Sc(V,w) of semi-conformal vectors of V, then we prove that Sc(V,w) is an aiYine algebraic variety with a partial ordering and an involution map. Corresponding to each semi-conformal vector, there is a unique maximal semi-conformal vertex operator subalgebra containing it. The properties of these subalgebras are invariants of vertex operator algebras. As an example, we describe the corresponding varieties of semi-conformal vectors for Heisenberg vertex operator algebras. As an application, we give two characterizations of Heisenberg vertex operator algebras using the properties of these varieties.
文摘We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra H4 with some natural conditions. It turns out that the representation theory of H4 is quite different from the theory of representations of Heisenberg algebras. We also study the extension of the vertex operator algebra VH4 (e, 0) by the even lattice L. We give the structure of the extension VH4 (e, 0) [L] and its irreducible modules via irreducible representations of VH4(e, 0) viewed as a vertex algebra.
基金Natural Science Foundation of ChinaGrant for Returned Scholars of Shanxi
文摘We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571119, 10671027)
文摘Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We also construct the Verma type admissible V-module from an A m (V)-module by using bimodules
基金National Natural Science Foundation of China (10471025,10771034)National Natural Science Foundation of Fujian Province (S0650009)Foudation of the Education Department of Fujian Provience (JA04170,JB07047)
文摘In this paper we discuss the K-groups of Wiener algebra ;W. For the 1-shift space XGM2,We obtain a characterization of Fredholm operators on X^nGM2 for all n ∈ N. We also calculate the K-groups of operator algebra on the 1-shift space XGM2.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10675086 10971117)the Natural Science Foundation of Shandong Province (Grant No.Y2006A03)
文摘Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.